On approximation of H-coloring

The minimum cost homomorphism problem (MinHOM) is a natural optimization problem for homomorphisms to a fixed (di)graph H (a.k.a H-coloring). Given an input (di)graph G, with a cost associated with mapping any vertex of G to any vertex of H, one seeks to minimize the sum of costs of the assignments over all homomorphisms of G to H.

We are interested in the approximation of MinHOM within a constant factor. We give a dichotomy classification for approximating the MinHOM(H) when H is a graph. For digraphs, we provide constant factor approximation algorithms for two important classes of digraphs, namely bi-arc digraphs and k-arc digraphs. Specifically, we have:

1-Dichotomy for Graphs: MinHOM(H) has a $2 |V(H)|$-approximation algorithm if graph H is a bi-arc graph, otherwise, it is inapproximable;

2- MinHOM(H) has a $|V(H)|^2$-approximation algorithm if H is a bi-arc digraph;

3- MinHOM(H) has a $|V(H)|^2$-approximation algorithm if H is a k-arc digraph.