The domination number is the smallest size of a dominating set, a set D of vertices in a graph such that each vertex of the graph is either an element of D, or is adjacent to an element of D. When considering the domination number in the incidence graph of a finite generalized quadrangle $GQ(s, t)$, it seems obvious that this number is at least $2st + 2$, the size of the union of an ovoid and a spread. In this talk, I'll tell you the story of how Tamás Héger and I made the surprising discovery that this is not true.