A quasigroup \((Q, \ast)\) is an algebraic structure whose multiplication table is a Latin square. We say that \((x, y, z) \in Q^3\) is an associative triple if \((x \ast y) \ast z = x \ast (y \ast z)\). Let \(a(Q)\) denote the number of associative triples in \(Q\). One shows easily that \(a(Q) \geq |Q|\), and it was conjectured that \(a(Q) = |Q|\) never occurs for \(|Q| > 1\). When \(q\) is an odd prime power, we give a non-constructive proof of existence of quasigroup \(Q\) with \(a(Q) = |Q| = q^2\). Our main tools are Dickson nearfields and Weil bound for character sums. This is joint work with Aleš Drápal (Charles University, Prague).