FADEKEMI JANET OSAYE, University of Johannesburg, South Africa

Average eccentricity, k-packings and k-dominations in graphs

Let G be a connected graph of order n. The eccentricity $e_G(v)$ of a vertex v in G is the distance from v to a vertex farthest from v in G. The average eccentricity $avec(G)$ of G is defined as $avec(G) = \frac{1}{n} \sum_{v \in V(G)} e_G(v)$. Given $k \in \mathbb{N}$, a k-packing of G is a subset $S \subseteq V(G)$ such that the distance between any two vertices in S is at least $k + 1$. The maximum cardinality of a k-packing of G is the k-packing number $\beta_k(G)$ of G. A subset $D \subseteq G$ is a k-dominating set of G if each vertex of G is within distance at most k from some vertex in D. The minimum cardinality of a k-dominating set of G is the k-domination number $\gamma_k(G)$ of G. In this talk we present old and new bounds on the average eccentricity of G of given order and k-packing number or k-domination number.