DANNY RORABAUGH, Queen’s University

Logical Axioms and Computational Complexity: A Correspondence

Relational structure A is compact provided for any structure B of the same signature, if every finite substructure of B has a homomorphism to A then so does B. The Constraint Satisfaction Problem (CSP) for A is the computational problem of determining whether finite structures have homomorphisms into A. We explore a connection between the hierarchy of logical axioms and the complexity hierarchy of CSPs. It appears that the complexity of CSP for A corresponds to the strength of the axiom "A is compact". At the top, the statement "K_3 is compacts" is logically equivalent to the compactness theorem. Thus the compactness of K_3 implies the compactness of all finite relational structures. Moreover, the CSP for K_3 is NP-complete. At the bottom are width-one structures; these are provably complete from ZF and their corresponding CPSs are polynomial-time solvable.

This is joint work with Claude Tardif and David Wehlau, arXiv:1609.05221 [math.LO].