Extending the parking space

Brendon Rhoades (joint with Andrew Berget)

UCSD

Parking Functions

A parking function of size n is a labeled Dyck path of size n:

- ▶ a vertical run of size k is labeled with a subset of [n] of size k,
- every letter in [n] appears once as a label.

Defn: Park_n = { parking functions of size n }.

Fact: $|Park_n| = (n+1)^{n-1}$.

The Parking Space

 \mathfrak{S}_n acts on Park_n by label permutation.

Q: How does Park_n decompose as an \mathfrak{S}_{n} -module?

Vertical Run Partitions

If D is a Dyck path of size n, get a vertical run partition $\lambda(D) \vdash n$.

$$\lambda(D) = (3,2,2) \vdash 7$$

Coset Decomposition

Given $\lambda \vdash n$, let \mathfrak{S}_{λ} be the *Young subgroup*.

 $M^{\lambda} = \mathfrak{S}_n/\mathfrak{S}_{\lambda} = \text{coset representation}.$

Fact: Park_n $\cong_{\mathfrak{S}_n} \bigoplus_D M^{\lambda(D)}$, where D ranges over all size n Dyck paths.

Example:

$$\mathsf{Park}_3 \cong_{\mathfrak{S}_3} M^{(3)} \oplus 3M^{(2,1)} \oplus M^{(1,1,1)}.$$

Theorem: [Berget-R] There exists an \mathfrak{S}_{n+1} -module V_n such that

$$\operatorname{Res}_{\mathfrak{S}_n}^{\mathfrak{S}_{n+1}}(V_n) \cong_{\mathfrak{S}_n} \operatorname{\mathsf{Park}}_n.$$

Theorem: [Berget-R] There exists an \mathfrak{S}_{n+1} -module V_n such that

$$\operatorname{Res}_{\mathfrak{S}_n}^{\mathfrak{S}_{n+1}}(V_n) \cong_{\mathfrak{S}_n} \operatorname{\mathsf{Park}}_n.$$

Riddle: Can you see the action of \mathfrak{S}_{n+1} on Park_n?

Theorem: [Berget-R] There exists an \mathfrak{S}_{n+1} -module V_n such that

$$\mathrm{Res}_{\mathfrak{S}_n}^{\mathfrak{S}_{n+1}}(V_n) \cong_{\mathfrak{S}_n} \mathsf{Park}_n.$$

Riddle: Can you see the action of \mathfrak{S}_{n+1} on $Park_n$?

Probably not.

Theorem: [Berget-R] There exists an \mathfrak{S}_{n+1} -module V_n such that

$$\operatorname{Res}_{\mathfrak{S}_n}^{\mathfrak{S}_{n+1}}(V_n) \cong_{\mathfrak{S}_n} \operatorname{\mathsf{Park}}_n.$$

Riddle: Can you see the action of \mathfrak{S}_{n+1} on Park_n?

Probably not.

Fact: Park_n does *not* in general extend to \mathfrak{S}_{n+1} as a permutation module. Also, Park_n does *not* in general extend to \mathfrak{S}_{n+2} at all.

Problem: Let M be an \mathfrak{S}_n -module. Give a nice criterion for when M extends to \mathfrak{S}_{n+1} (or \mathfrak{S}_{n+r}).

Problem: Let M be an \mathfrak{S}_n -module. Give a nice criterion for when M extends to \mathfrak{S}_{n+1} (or \mathfrak{S}_{n+r}).

▶ The irrep S^{λ} extends to \mathfrak{S}_{n+1} iff $\lambda \vdash n$ is a rectangle minus an outer corner.

Problem: Let M be an \mathfrak{S}_n -module. Give a nice criterion for when M extends to \mathfrak{S}_{n+1} (or \mathfrak{S}_{n+r}).

- ► The irrep S^{λ} extends to \mathfrak{S}_{n+1} iff $\lambda \vdash n$ is a rectangle minus an outer corner.
- ▶ The regular representation $\mathbb{C}[\mathfrak{S}_n]$ extends to \mathfrak{S}_{n+2} . [Whitehouse]

Problem: Let M be an \mathfrak{S}_{n} -module. Give a nice criterion for when M extends to \mathfrak{S}_{n+1} (or \mathfrak{S}_{n+r}).

- ► The irrep S^{λ} extends to \mathfrak{S}_{n+1} iff $\lambda \vdash n$ is a rectangle minus an outer corner.
- ▶ The regular representation $\mathbb{C}[\mathfrak{S}_n]$ extends to \mathfrak{S}_{n+2} . [Whitehouse]
- ► The coset representation M^{λ} does not extend to \mathfrak{S}_8 for $\lambda = (3,2,2) \vdash 7$.

Problem: Let M be an \mathfrak{S}_{n} -module. Give a nice criterion for when M extends to \mathfrak{S}_{n+1} (or \mathfrak{S}_{n+r}).

- ► The irrep S^{λ} extends to \mathfrak{S}_{n+1} iff $\lambda \vdash n$ is a rectangle minus an outer corner.
- ▶ The regular representation $\mathbb{C}[\mathfrak{S}_n]$ extends to \mathfrak{S}_{n+2} . [Whitehouse]
- ► The coset representation M^{λ} does not extend to \mathfrak{S}_8 for $\lambda = (3,2,2) \vdash 7$.
- ► The map

Res:
$$K_0(\mathfrak{S}_{n+1}) \to K_0(\mathfrak{S}_n)$$

is surjective over \mathbb{Q} .

Graphs

 $K_{n+1} = \text{complete graph on } [n+1].$

A subgraph $G \subseteq {[n+1] \choose 2}$ is *slim* if the complement $K_{n+1} - G$ is connected.

Polynomials

To any subgraph $G\subseteq \binom{[n+1]}{2}$, we associate the polynomial

$$p(G) = \prod_{(i < j) \in G} (x_i - x_j).$$

$$p(G) = (x_2 - x_3)(x_2 - x_6)(x_3 - x_5)(x_3 - x_6)$$

Spaces

Defn: Let $V_n \subset \mathbb{C}[x_1,\ldots,x_{n+1}]$ be the subspace

$$V_n = \operatorname{span}\{p(G) : G \subseteq K_{n+1} \text{ is slim}\}.$$

Obs: V_n is a graded \mathfrak{S}_{n+1} -module.

Theorem: [Berget-R] $\operatorname{Res}_{\mathfrak{S}_n}^{\mathfrak{S}_{n+1}}(V_n) \cong \operatorname{Park}_n$. (Graded structure?)

Area

Defn: The *area* of a Dyck path D is the number of boxes to the northwest of D.

$$area(D) = 11$$

Graded Main Result

Theorem: [Berget-R] The \mathfrak{S}_n -isomorphism type of the degree k piece $V_n(k)$ is

$$\bigoplus_{D} M^{\lambda(D)},$$

where D ranges over all size n Dyck paths with area k.

Example: The graded \mathfrak{S}_3 -character of V_3 is

$$q^{0}M^{(3)} + q^{1}M^{(2,1)} + 2q^{2}M^{(2,1)} + q^{3}M^{(1,1,1)}$$
.

Extended Structure

$$V_n(k) = \text{degree } k \text{ piece of } V_n \text{ for } k = 0, 1, \dots, {n \choose 2}.$$

Extended Structure

$$V_n(k) = \text{degree } k \text{ piece of } V_n \text{ for } k = 0, 1, \dots, \binom{n}{2}$$
.

Theorem: [Berget-R] $V_n(k) \cong_{\mathfrak{S}_{n+1}} \operatorname{Sym}^k(V)$ for $0 \le k < n$, where V is the reflection representation of \mathfrak{S}_{n+1} .

Extended Structure

$$V_n(k) = \text{degree } k \text{ piece of } V_n \text{ for } k = 0, 1, \dots, \binom{n}{2}$$
.

Theorem: [Berget-R] $V_n(k) \cong_{\mathfrak{S}_{n+1}} \operatorname{Sym}^k(V)$ for $0 \le k < n$, where V is the reflection representation of \mathfrak{S}_{n+1} .

Theorem: [Berget-R] Let $C=\langle (1,2,\ldots,n+1)\rangle$ and $\zeta=e^{\frac{2\pi i}{n+1}}.$ Then

$$V_n(\mathsf{top}) = V_n\left(inom{n}{2}\right) \cong_{\mathfrak{S}_{n+1}} \mathrm{Ind}_{\mathcal{C}}^{\mathfrak{S}_{n+1}}(\zeta) \otimes \mathrm{sign}.$$

Open Problems

Problem: Given a nice criterion for deciding whether an \mathfrak{S}_{n} -module M extends to \mathfrak{S}_{n+1} (or \mathfrak{S}_{n+r}).

Problem: Determine the full graded \mathfrak{S}_{n+1} -structure of V_n .

Problem: For n and k fixed, what is the maximum r so that $V_n(k)$ extends to \mathfrak{S}_{n+r} ?

- $k = 0 \Rightarrow r = \infty$
- $k = 1, n > 2 \Rightarrow r = 1$
- ▶ $k = \text{top} \Rightarrow r \ge 2$.

Thanks for listening!

A. Berget and B. Rhoades. Extending the parking space. arXiv: 1303.5505