Counting Partitions of Graphs

Pavol Hell ¹ Miki Hermann ² Mayssam Mohammadi Nevisi ¹

¹Simon Fraser University, Burnaby, Canada

²École Polytechnique, Palaiseau, France

June 11, 2013

CanaDAM 2013

Memorial University of Newfoundland

Outline

- Introduction
 - Graph Homomorphisms and Counting
 - Matrix Partition Problem for Graphs
- The Dichotomy
- 3 A Warm-up: Two by two matrices
- Polynomial Algorithms
 - Sparse-Dense Partitions
 - Homogeneous Sets and Modular Decomposition
 - Counting by Components
 - One Special Case
- 6 Hardness Results
- 6 Future Directions

Let H be a fixed graph. The problem of *counting homomorphisms* to H, denoted #H, asks for the number of homomorphisms of an input graph G to graph H.

Let H be a fixed graph. The problem of *counting homomorphisms* to H, denoted #H, asks for the number of homomorphisms of an input graph G to graph H.

Theorem

The problem #H is #P-complete if H has a connected component which is not a complete reflexive graph or a complete bipartite irreflexive graph. Otherwise, the problem is in FP.

M. Dyer, C. Greenhill (1999)

Equivalently, #H is in FP when H does not contain any of the followings as an induced subgraph, and is #P-complete otherwise.

- A looped vertex adjacent to a non-looped vertex
- An irreflexive P₄
- A reflexive P₃
- Triangle

$$\begin{pmatrix} 1 & 1 \\ & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 0 & 0 \\ & 0 & 1 & 0 \\ & & 0 & 1 \\ & & & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 0 \\ & 1 & 1 \\ & & & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 1 \\ & 0 & 1 \\ & & & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix}0&1&1\\&0&1\\&&0\end{pmatrix}$$

Theorem

M. Dyer, C. Greenhill (1999)

Let H be a graph such that #H(H) is #P-complete. Then there exists a constant Δ such that #H(H) remains #P-complete when restricted to instances with maximum degree at most Δ .

Let H be a fixed graph. The problem of *counting list homomorphisms* to H, denoted $\# \mathrm{LHOM}$, asks for the number of list homomorphisms of an input graph G with respect to the lists $L(v) \subset V(H)$, to H.

Let H be a fixed graph. The problem of counting list homomorphisms to H, denoted $\# \mathrm{LHOM}$, asks for the number of list homomorphisms of an input graph G with respect to the lists $L(v) \subset V(H)$, to H.

Theorem

Pavol H., J. Nešetřil (2001)

 $\# \mathrm{LHOM}(H)$ is polynomial time solvable when each component of H is either a reflexive complete graph or an irreflexive complete bipartite graph, and is $\# \mathrm{P}$ -complete otherwise.

Let M be a fixed symmetric matrix of size k over $\{0, 1, *\}$.

An M-partition of a graph G is a partition P_1, P_2, \cdots, P_k of V(G) such that for any two distinct vertices u, v in (not necessarily different) parts P_i, P_j are adjacent when $M_{i,j} = 1$ and are not adjacent when $M_{i,j} = 0$. $M_{i,j} = *$ does not enforce any restriction.

The graph partition problem for matrix M (or simply the M-partition problem), asks whether an input graph G admits an M-partition.

Graph partition problems generalize both graph colouring and graph homomorphisms.

- The diagonal values define the constraints on the parts:
 - P_i must induce an independent set whenever $M_{i,i} = 0$
 - P_i must induce a clique whenever $M_{i,i} = 1$
- The off-diagonal values define the constraints among different parts:
 - $M_{i,j}=1$ means every vertex in P_i must be adjacent to every vertex in P_j in G in any M-partition
 - $M_{i,j} = 0$ means no vertex in P_i might be adjacent to a vertex in P_j in G in any M-partition

The matrices for 3-colouring, stable cutset, stable cutset pair, and $2K_2$ partition.

$$\left(\begin{array}{ccc}
0 & * & * \\
 & 0 & * \\
 & & 0
\end{array}\right)$$

$$\left(egin{array}{cccc} * & * & 0 & 0 \ & 0 & * & 0 \ & & & 0 & * \ & & & & * \end{array}
ight)$$

$$\left(\begin{array}{cccc} 0 & * & * \\ & 0 & * \\ & & 0 \end{array}\right) \quad \left(\begin{array}{ccccc} * & 0 & * \\ & * & * \\ & & 0 \end{array}\right) \quad \left(\begin{array}{ccccc} * & * & 0 & 0 \\ & 0 & * & 0 \\ & & & * \end{array}\right) \quad \left(\begin{array}{ccccc} * & 1 & * & * \\ & * & * & * \\ & & * & * & * \\ & & & * & 1 \\ & & & * \end{array}\right)$$

• When there is an * on the diagonal, then the graph *M*-partition problem is trivial.

• When there is an * on the diagonal, then the graph *M*-partition problem is trivial.

Theorem Feder et al. (2003)

Suppose k = 4. The M-partition problem is NP-complete when M contains the matrix of 3-colouring or its complement, and is polynomial time solvable otherwise.

Counting Partitions of Graphs

Theorem

Suppose M is an m by m matrix with m < 4, and assume that M contains both a 0 and a 1.

If M contains, as a principal submatrix, the matrix for independent sets, or the matrix for cliques, then the counting problem for M-partitions is #P-complete.

Otherwise, counting M-partitions is polynomial.

Theorem

J.S. Provan and M.O. Ball (1983)

The problem of counting number of independent sets in graphs, denoted #I(G), is #P-complete.

Theorem

J.S. Provan and M.O. Ball (1983)

The problem of counting number of independent sets in graphs, denoted #I(G), is #P-complete.

Corollary

The problem of counting number of cliques in graphs, denoted #K(G), is #P-complete.

Theorem

J.S. Provan and M.O. Ball (1983)

The problem of counting number of independent sets in graphs, denoted #I(G), is #P-complete.

Corollary

The problem of counting number of cliques in graphs, denoted #K(G), is #P-complete.

In all other cases, counting is trivial or easy.

Theorem

J.S. Provan and M.O. Ball (1983)

The problem of counting number of independent sets in graphs, denoted #I(G), is #P-complete.

Corollary

The problem of counting number of cliques in graphs, denoted #K(G), is #P-complete.

In all other cases, counting is trivial or easy.

$$\begin{pmatrix} 0 & * \\ & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & * \\ & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ & 0 \end{pmatrix}$$

Polynomial Algorithms

- Algorithms based on sparse-dense partitions
- Algorithms based on modular decomposition
- Algorithms based on connected components
- Pre-colouring extension and one special case

Sparse-Dense Partitions

If S and D are two families of subsets of V(G), and if there exists a constant t such that all intersections $S \cap D$ with $S \in S$, $D \in D$, have at most t vertices, then G with n vertices has at most n^{2t} sparse-dense partitions $V(G) = S \cup D$, with $S \in S$, $D \in D$, and they can be generated in polynomial time.

Motwani et. al (2003)

Sparse-Dense Partitions

If S and D are two families of subsets of V(G), and if there exists a constant t such that all intersections $S \cap D$ with $S \in S$, $D \in D$, have at most t vertices, then G with n vertices has at most n^{2t} sparse-dense partitions $V(G) = S \cup D$, with $S \in S$, $D \in D$, and they can be generated in polynomial time.

Motwani et. al (2003)

ullet For split partitions, take ${\cal S}$ to be all independent sets, ${\cal D}$ all cliques (t=1)

Let
$$M = \begin{pmatrix} a & d & e \\ & b & f \\ & & c \end{pmatrix}$$
.

Theorem

If a, b, c are not all the same and none is *, then the number of M-partitions can be counted in polynomial time.

Let
$$M = \begin{pmatrix} a & d & e \\ & b & f \\ & & c \end{pmatrix}$$
.

Theorem

If a, b, c are not all the same and none is *, then the number of M-partitions can be counted in polynomial time.

- By symmetry and complementarity, we may assume that a=b=0 and c=1
- Take for S all bipartite induced subgraphs, and for D all cliques (t=2)

Modular Decomposition

Definition

A module (or a homogeneous set) in a graph G is a set $S \subseteq V(G)$ such that every vertex not in S is either adjacent to all vertices of S or to none of them.

Trivial examples include:

- The empty set
- The entire vertex set of *G*
- Every singleton vertex

Gallai's Theorem

Theorem Gallai (1967)

For any graph G one of the following three cases must occur:

- G is disconnected, with components $G_1, G_2, \ldots G_k$. Each union of the sets $V(G_i)$ is a module of G, and the other modules of G are precisely all the modules of individual components G_i .
- ② The \overline{G} is disconnected, with components H_1, H_2, \ldots, H_ℓ . Each union of the sets $V(H_j)$ is a module of G, and the other modules of G are precisely all the modules of individual subgraphs $\overline{H_j}$.
- 3 Both G and \overline{G} connected. There is a partition S_1, S_2, \ldots, S_r of V(G) (computable in linear time), such that all the modules of G are precisely all the modules of individual subgraphs induced by the sets S_t , $t=1,\ldots,r$, plus the module V(G).

Modular Decomposition

Theorem

There is a polynomial time algorithm to count the number of modules satisfying any combination of restrictions where the module itself, its set of neighbours, and its set of non-neighbours are an independent set, a clique, or unrestricted.

Modular Decomposition

Theorem

There is a polynomial time algorithm to count the number of modules satisfying any combination of restrictions where the module itself, its set of neighbours, and its set of non-neighbours are an independent set, a clique, or unrestricted.

Theorem

If d, e, f are all different, and M does not contain, as a principal submatrix, the matrix for independent sets or cliques, then the number of M-partitions can be counted in polynomial time.

Counting via Components

Theorem

Assume that two of d, e, f are 0 and M does not contain as principal submatrix the matrix for independent sets or cliques. Then counting the number of M-partitions is polynomial.

When the input graph G is not bipartite:

- If G is triangle-free, then the answer is 0.
- A triangle in G must use all three colours, in six possible ways. And any of these six partial colourings can be extended uniquely until an induced bipartite sub-graph of G remains unassigned.

And if G = (X, Y) is bipartite, then there is a recursive polynomial-time algorithm:

And if G = (X, Y) is bipartite, then there is a recursive polynomial-time algorithm:

- If G is $2K_2$ free, then it has a (bipartite) universal vertex (J.P. Liu and H.S. Zhou, 1997).
- Partial proper colourings of a $2K_2$ can be extended nicely (until all remaining vertices are disjoint from partial set A and fully adjacent to either B or C)
- There are exactly two ways to colour a $2K_2$, and the sub-graphs remained after extending each of them are disjoint.
- Partial proper colourings of a universal vertex u can be extended nicely (It will either enforce the colour of the opposite part completely, or nothing)

Hardness Proof Technique

Let G^* be the graph obtained from G by adding a universal vertex u to G. We have:

$$\#\mathrm{M}(G^*) = \#\mathrm{I}(G) + \#\mathrm{M}(G) + \#\mathrm{AB}(G)$$

$$(u \in A) \quad (u \in B) \quad (u \in C)$$

Open Questions

• Is there a dichotomy when $k \ge 4$?

• Are there a finite set of forbidden structures (principal sub-matrices) that make the problem hard?

Thank you

