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Counting Homomorphisms of Graphs

Let H be a fixed graph. The problem of counting homomorphisms to H,
denoted #H, asks for the number of homomorphisms of an input graph G
to graph H.

Theorem M. Dyer, C. Greenhill (1999)

The problem #H is #P-complete if H has a connected component which
is not a complete reflexive graph or a complete bipartite irreflexive graph.
Otherwise, the problem is in FP.
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Counting Homomorphisms of Graphs

Equivalently, #H is in FP when H does not contain any of the followings
as an induced subgraph, and is #P-complete otherwise.

A looped vertex adjacent to a non-looped vertex

An irreflexive P4

A reflexive P3

Triangle
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Counting Homomorphisms of Graphs
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Counting Homomorphisms of Graphs

Theorem M. Dyer, C. Greenhill (1999)

Let H be a graph such that #H(H) is #P-complete. Then there exists a
constant ∆ such that #H(H) remains #P-complete when restricted to
instances with maximum degree at most ∆.
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Counting List Homomorphisms of Graphs

Let H be a fixed graph. The problem of counting list homomorphisms to
H, denoted #LHOM, asks for the number of list homomorphisms of an
input graph G with respect to the lists L(v) ⊂ V (H), to H.

Theorem Pavol H., J. Nešeťril (2001)

#LHOM(H) is polynomial time solvable when each component of H is
either a reflexive complete graph or an irreflexive complete bipartite graph,
and is #P-complete otherwise.

CanaDAM 2013 (MUN) Graph Partitions June 11, 2013 7 / 26



Counting List Homomorphisms of Graphs

Let H be a fixed graph. The problem of counting list homomorphisms to
H, denoted #LHOM, asks for the number of list homomorphisms of an
input graph G with respect to the lists L(v) ⊂ V (H), to H.

Theorem Pavol H., J. Nešeťril (2001)
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Graph M-Partition

Let M be a fixed symmetric matrix of size k over {0, 1, ∗}.

An M-partition of a graph G is a partition P1,P2, · · · ,Pk of V (G ) such
that for any two distinct vertices u, v in (not necessarily different) parts
Pi ,Pj are adjacent when Mi ,j = 1 and are not adjacent when Mi ,j = 0.
Mi ,j = ∗ does not enforce any restriction.

The graph partition problem for matrix M (or simply the M-partition
problem), asks whether an input graph G admits an M-partition.

Graph partition problems generalize both graph colouring and graph
homomorphisms.
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Graph M-Partition

The diagonal values define the constraints on the parts:

Pi must induce an independent set whenever Mi,i = 0

Pi must induce a clique whenever Mi,i = 1

The off-diagonal values define the constraints among different parts:

Mi,j = 1 means every vertex in Pi must be adjacent to every vertex in
Pj in G in any M-partition

Mi,j = 0 means no vertex in Pi might be adjacent to a vertex in Pj in
G in any M-partition
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Graph M-Partition
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Graph M-Partition

The matrices for 3-colouring, stable cutset, stable cutset pair, and 2K2 partition.
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Graph M-Partition

When there is an ∗ on the diagonal, then the graph M-partition
problem is trivial.

Theorem Feder et al. (2003)

Suppose k = 4. The M-partition problem is NP-complete when M
contains the matrix of 3-colouring or its complement, and is polynomial
time solvable otherwise.
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Counting Partitions of Graphs

Theorem

Suppose M is an m by m matrix with m < 4, and assume that M contains
both a 0 and a 1.

If M contains, as a principal submatrix, the matrix for independent sets, or
the matrix for cliques, then the counting problem for M-partitions is
#P-complete.

Otherwise, counting M-partitions is polynomial.
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Warm-Up: Two by Two Matrices

Theorem J.S. Provan and M.O. Ball (1983)

The problem of counting number of independent sets in graphs, denoted
#I(G ), is #P-complete.

Corollary

The problem of counting number of cliques in graphs, denoted #K(G ), is
#P-complete.

In all other cases, counting is trivial or easy.(
0 ∗

1

) (
0 ∗

0

) (
0 1

0

)
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Polynomial Algorithms

Algorithms based on sparse-dense partitions

Algorithms based on modular decomposition

Algorithms based on connected components

Pre-colouring extension and one special case
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Sparse-Dense Partitions

Sparse-Dense Partitions

If S and D are two families of subsets of V (G ), and if there exists a
constant t such that all intersections S ∩ D with S ∈ S,D ∈ D, have at
most t vertices, then G with n vertices has at most n2t sparse-dense
partitions V (G ) = S ∪ D, with S ∈ S,D ∈ D, and they can be generated
in polynomial time.

Motwani et. al (2003)

For split partitions, take S to be all independent sets, D all cliques
(t = 1)
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Sparse-Dense Partitions

Let M =

a d e
b f

c

.

Theorem

If a, b, c are not all the same and none is ∗, then the number of
M-partitions can be counted in polynomial time.

By symmetry and complementarity, we may assume that a = b = 0
and c = 1

Take for S all bipartite induced subgraphs, and for D all cliques
(t = 2)
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Modular Decomposition

Definition

A module (or a homogeneous set) in a graph G is a set S ⊆ V (G ) such
that every vertex not in S is either adjacent to all vertices of S or to none
of them.

Trivial examples include:

The empty set

The entire vertex set of G

Every singleton vertex
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Gallai’s Theorem

Theorem Gallai (1967)

For any graph G one of the following three cases must occur:

1 G is disconnected, with components G1,G2, . . .Gk .
Each union of the sets V (Gi ) is a module of G , and the other modules
of G are precisely all the modules of individual components Gi .

2 The G is disconnected, with components H1,H2, . . . ,H`.
Each union of the sets V (Hj) is a module of G , and the other
modules of G are precisely all the modules of individual subgraphs Hj .

3 Both G and G connected. There is a partition S1, S2, . . . ,Sr of V (G )
(computable in linear time), such that all the modules of G are
precisely all the modules of individual subgraphs induced by the sets
St , t = 1, . . . , r , plus the module V (G ).
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Modular Decomposition

Theorem

There is a polynomial time algorithm to count the number of modules
satisfying any combination of restrictions where the module itself, its set
of neighbours, and its set of non-neighbours are an independent set, a
clique, or unrestricted.

Theorem

If d , e, f are all different, and M does not contain, as a principal
submatrix, the matrix for independent sets or cliques, then the number of
M-partitions can be counted in polynomial time.
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Counting via Components

Theorem

Assume that two of d , e, f are 0 and M does not contain as principal
submatrix the matrix for independent sets or cliques. Then counting the
number of M-partitions is polynomial.

B

A

C
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One Special Case

B

A

C

When the input graph G is not bipartite:

If G is triangle-free, then the answer is 0.

A triangle in G must use all three colours, in six possible ways. And
any of these six partial colourings can be extended uniquely until an
induced bipartite sub-graph of G remains unassigned.

CanaDAM 2013 (MUN) Graph Partitions June 11, 2013 22 / 26



One Special Case

B

A

C

When the input graph G is not bipartite:

If G is triangle-free, then the answer is 0.

A triangle in G must use all three colours, in six possible ways. And
any of these six partial colourings can be extended uniquely until an
induced bipartite sub-graph of G remains unassigned.

CanaDAM 2013 (MUN) Graph Partitions June 11, 2013 22 / 26



One Special Case

And if G = (X ,Y ) is bipartite, then there is a recursive polynomial-time
algorithm:

If G is 2K2 free, then it has a (bipartite) universal vertex (J.P. Liu
and H.S. Zhou, 1997).

Partial proper colourings of a 2K2 can be extended nicely (until all
remaining vertices are disjoint from partial set A and fully adjacent to
either B or C )

There are exactly two ways to colour a 2K2, and the sub-graphs
remained after extending each of them are disjoint.

Partial proper colourings of a universal vertex u can be extended
nicely (It will either enforce the colour of the opposite part
completely, or nothing)
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Hardness Proof Technique

B

A

C

Let G ∗ be the graph obtained from G by adding a universal vertex u to G .
We have:

#M(G ∗) = #I(G ) + #M(G ) + #AB(G )

(u ∈ A) (u ∈ B) (u ∈ C )
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Open Questions

Is there a dichotomy when k ≥ 4?

Are there a finite set of forbidden structures (principal sub-matrices)
that make the problem hard?
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Thank you
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