Requiring Pairwise Nonadjacent Chords in Cycles

Terry McKee
Wright State University
Dayton, Ohio – USA
terry.mckee@wright.edu

CanaDAM-2013
Memorial University of Newfoundland
11 June 2013
For each $k \geq 4$, let G_k be the class of all graphs in which every cycle of length $\geq k$ has $\geq k - 3$ pairwise nonadjacent chords.

So, G_4 is the class of chordal graphs.

Theorem: A graph is in G_k if and only if every cycle of length $\geq k$ has $\geq k - 3$ pairwise nonadjacent chords, each crossing another.

when $k = 6$:
Proof (only if):
Suppose \(k \geq 4 \) and every cycle of length \(\geq k \) has \(\geq k - 3 \) pairwise adjacent chords.

Assume \(C \) a minimum-length cycle with \(|C| \geq k \) that does not have \(k - 3 \) pairwise adjacent chords with each crossing another.

So \(k \geq 6 \) and \(C \) has \(k - 3 \geq 3 \) chords \(e_1, \ldots, e_{k-3} \) where (say) \(e_{k-3} \) doesn’t cross another.

Say \(e_1, \ldots, e_h \) are chords of \(C' \) and \(e_{h+1}, \ldots, e_{k-4} \) are not, where
\[
\left\lfloor \frac{k - 4}{2} \right\rfloor \leq h \leq k - 4.
\]

If \(h = k - 4 \), then \(k \leq k + (k - 6) = 2(k - 4) + 2 \leq |C'| < |C| \)

If \(h < k - 4 \), then \(k - 2 = (k - 4) + 2 \leq |C'| < |C| \), so \(k \leq |C^*| < |C| \)
For each \(k \geq 4 \), let \(G_k \) be the class of all graphs in which every cycle of length \(\geq k \) has \(\geq k - 3 \) pairwise nonadjacent chords. So, \(G_4 \) is the class of chordal graphs.

And \(G_5 \) is the class of **distance-hereditary graphs**.

Corollary: A graph is distance-hereditary if and only if every cycle of length \(\geq 5 \) has *nonadjacent* chords.

[E. Howorka, QJM-O 1977]
For each $k \geq 4$, let G_k be the class of all graphs in which every cycle of length $\geq k$ has $\geq k - 3$ pairwise nonadjacent chords.

Summary:

A graph is in G_4 iff it is chordal.

A graph is in G_5 iff it is distance-hereditary.

A graph is in G_6 iff every induced hamiltonian subgraph of order ≥ 6 either contains a $K_{3,3}$ subgraph or is a triangular prism.

A graph is in G_7 iff every induced hamiltonian subgraph of order ≥ 7 is 3-connected and bipartite.

Theorem: When $k \geq 8$, a graph is in G_k if and only if its circumference is $< k$. (i.e., no cycle has length $\geq k$).
Special Case: $G \in G_8$ implies no cycle of G has length ≥ 8.

Suppose $G \in G_8$.
No cycle of G can have length 8 or 9.
So no cycle of G can have length 8, 9, or 10.
So no cycle of G can have length 8, 9, 10, or 11.
So no cycle of G can have length 8, 9, 10, 11 or 12.
So no cycle of G can have length ≥ 8.

$\therefore l = |C| \geq 13$ implies C cannot have i-chords whenever $2 \leq i \leq l-7$
yet every i-chord of C must have $2\leq i \leq (l-1)/2 \leq l-7$.

\uparrow

$l \geq 13$
G_4 is the class of chordal graphs.

$G_4 \cap G_5$ is the class of ptolemaic graphs.

Corollary: A graph in $G_4 \cap G_5$ is also in G_6 if and only if every induced hamiltonian subgraph of order ≥ 6 contains a subgraph $\cong K_6 - K_3$.

![Graph](image)
A graph is in G_4 if and only if, for every k,
every k-cycle has at least $k - 3$ chords.

A graph is in $G_4 \cap G_5$ if and only if, for every k,
every k-cycle has at least $\left\lceil \frac{3}{2}(k - 3) \right\rceil$ chords.

[E. Howorka, JGT 1981]

Theorem: A graph is in $G_4 \cap G_5 \cap G_6$ iff, for every k,
every k-cycle C has at least
\[
f(k) = \frac{1}{2} \left\lceil \frac{k}{2} \right\rceil \left\lceil \frac{3}{2}(k - 3) \right\rceil\]
chords
and $G[V(C)] \not\cong K_6 - K_{1,3}$.

$K_6 - K_{1,3} \not\in G_6$
Theorem: A graph is in $\mathcal{G}_4 \cap \mathcal{G}_5 \cap \mathcal{G}_6$ if and only if, for every k, every k-cycle C has at least $f(x) = \frac{1}{2} \left\lceil \frac{k}{2} \right\rceil \left\lfloor \frac{3}{2}(k - 3) \right\rfloor$ chords
and $G[V(C)] \neq K_6 - K_{1,3}$.

Theorem: A graph is in $\mathcal{G}_4 \cap \mathcal{G}_5 \cap \mathcal{G}_6$ if and only if every induced hamiltonian subgraph H
has at least $\left\lceil \frac{|V(H)|}{2} \right\rceil$ universal vertices.
(i.e., “almost most” of its vertices are universal)

Theorem: A graph in $\mathcal{G}_4 \cap \mathcal{G}_5 \cap \mathcal{G}_6$ is also in \mathcal{G}_7
if and only if its circumference is < 7.
(i.e., no cycle has length ≥ 7).