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Overview

Construction X is known from the theory of classical error control
codes. We present a variant of this construction that produces
stabilizer quantum error control codes from arbitrary linear codes.

Our construction does not require the classical linear code that is
used as an ingredient to satisfy the dual containment (equivalently,
self-orthogonality) condition.

We prove lower bounds on the minimum distance of quantum
codes obtained from our construction.

We give examples of record breaking quantum codes produced
from our construction.
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Notation

For x , y ∈ Fn
4 let 〈x , y〉 =

∑n
i=1 xiyi =

∑n
i=1 xiyi

2 be their
Hermitian inner product.

C⊥h := {u ∈ Fn
4 : (∀x ∈ C ) 〈u, x〉 = 0} ... the Hermitian dual of C

Tr(a) := a + a2 ... the trace from F4 to F2

wt(x) ... the Hamming weight of x ∈ Fn
4

wt(C ) := min{wt(x) : x ∈ C , x 6= 0}
... the minimum distance of linear code C
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Quantum codes

A quantum error-correcting code (QECC) is a code that protects
quantum information from corruption by noise (decoherence) on
the quantum channel in a way that is similar to how classical
error-correcting codes protect information on the classical channel.

We denote by [[n, k , d ]] the parameters of a binary quantum code
that encodes k logical qubits into n physical qubits and has
minimum distance d . We only deal with binary quantum codes in
this talk, but our method can be generalized to odd characteristic
as well.

For fixed n and k , the higher d is, the more error control the code
achieves.
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Stabilizer quantum codes

A binary stabilizer quantum code of length n is equivalent to a
quaternary additive code (an additive subgroup) C ⊂ Fn

4 such that
Tr(〈x , y〉) = 0 for all x , y ∈ C .

A.R. Calderbank, E.M. Rains, P.W. Shor, N.J.A. Sloane, Quantum
error correction via codes over GF(4). IEEE Trans. Inform. Theory
1998, and some earlier papers.
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Stabilizer quantum codes from linear quaternary codes

If we further restrict our attention to linear subspaces of Fn
4, then

the following theorem expresses the parameters of the quantum
code that can be constructed from a classical linear, Hermitian
dual containing quaternary code.

Theorem

Given a linear [n, k , d ]4 code C such that C⊥h ⊆ C , we can
construct an [[n, 2k − n, d ]] quantum code.

Quaternary additive codes are less developed but this is an active
current topic.
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Preliminaries

For x ∈ Fn
4 let ||x || = 〈x , x〉 be the norm of x . Note that ||x || is

always 0 or 1 and it equals the parity of wt(x).

A subset S ⊂ Fn
4 is called orthonormal if 〈x , y〉 = 0 for any two

distinct x , y ∈ S and 〈x , x〉 = 1 for any x ∈ S .

Proposition

Let D be a subspace of Fn
4 and assume that M is a basis for

D ∩D⊥h . Then there exists an orthonormal set B such that M ∪B
is a basis for D.

We prove the Proposition from scratch in our paper, in order to
give an algorithm for constructing such a set B for any given D.
(The algorithm can be randomized to construct many different
instances of admissible sets B.)
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Construction X for QECC

Theorem (L., Singh)

For an [n, k ]4 linear code C denote e := n − k − dim(C ∩ C⊥h).
Then there exists an [[n + e, 2k − n + e, d ]] quantum code with
d ≥ min{wt(C ),wt(C + C⊥h) + 1}.

Note that for e = 0 we get the standard construction mentioned
earlier.
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Proof

Note

e = dim(C⊥h) − dim(C ∩ C⊥h) = dim(C + C⊥h) − dim(C ).

To simplify notation on slides we identify a matrix with its set of
rows.

Denote s := dim(C ∩ C⊥h) and let

G =

 Ms×n 0s×e
A(n−e−2s)×n 0(n−e−2s)×e

Be×n Ie×e


be such that M is a basis for C ∩ C⊥h , M ∪ A is a basis for C ,
M ∪ B is a basis for C⊥h , and B is an orthonormal set. Note that
M ∪ A ∪ B is a basis for C + C⊥h .
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Proof (cont’d)

Let E be the row span of G .

Let S be the submatrix of G given by

S =

(
Ms×n 0s×e
Be×n Ie×e

)
.

By construction, each vector in S is orthogonal to each row of G ,
thus each vector in S belongs to E⊥h . Since

dim(E⊥h) = n + e − (n − s) = e + s = |S |

it follows that S is a basis for E⊥h . Since S is a subset of E by
construction, it follows that E⊥h ⊆ E .
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Proof (cont’d)

Recall that E is generated by

G =

 Ms×n 0s×e
A(n−e−2s)×n 0(n−e−2s)×e

Be×n Ie×e


where M ∪ A generates C and M ∪ A ∪ B generates C + C⊥h .

Let x ∈ E , x 6= 0. By considering two cases, we have
wt(x) ≥ wt(C ) or wt(x) ≥ wt(C + C⊥h) + 1.

Thus E is an [n + e, k + e, d ]4 code with
d ≥ min{wt(C ),wt(C + C⊥h) + 1} and E⊥h ⊆ E . An application
of the general theorem on construction of quantum codes from
linear codes to the code E finishes the proof of our theorem.
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Applying our construction

If e is large then wt(C + C⊥h) + 1 may be a weak lower bound on
the minimum weight of E . Thus it seems reasonable to focus on
codes for which e is positive but small. Thus characterizing such
codes is an interesting problem as it leads to applications of our
construction. Next we give such a characterization for cyclic codes.

In general this problem appears to be similar to one of central
problems in quantum coding theory: characterizing dual containing
(or, equivalently, self-orthogonal) linear codes.
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Using linear cyclic codes for C in our construction

Let a linear cyclic code C ⊂ Fn
4 with n odd be given as

C = 〈g(x)〉 ⊂ F4[x ]/(x
n − 1). Let β ∈ F4m be a fixed primitive nth

root of unity. The defining set of C is {k : g(βk) = 0, 0 ≤ k < n}.

Denote Ca := {a4j mod n : 0 ≤ j < m} ⊂ Zn the cyclotomic coset
modulo n containing a. The defining set of a cyclic code is the
union of some cyclotomic cosets.

Proposition (L., Singh)

If C is a quaternary linear cyclic code with defining set Z , then
dim(C⊥h) − dim(C ∩ C⊥h) = |Z ∩−2Z |.
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Using cyclic codes for C in our construction

Note e = dim(C⊥h) − dim(C ∩ C⊥h) = |Z ∩−2Z | in our
construction.

Backtracking algorithm to enumerate all cyclic codes of length n
with an upper bound on e:
Start with Z = ∅ and add one cyclotomic coset to Z at a time.
Backtracking rule follows from:

Z ′ ⊇ Z =⇒ |Z ′ ∩−2Z ′| ≥ |Z ∩−2Z |.

If C is cyclic, then both C⊥h and C + C⊥h are cyclic too. This
makes computing their minimum distance, and thus bounding the
minimum distance of our QECC, much easier. We used the built-in
function in Magma.
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A special lower bound for certain cyclic codes

If n is divisible by 3, then {0}, {n3 } and {2n
3 } are singleton cyclotomic

cosets and each of them is fixed under the map S 7→ −2S .

Theorem (L., Singh)

Assume that n is divisible by 3 and let C be an [n, k ]4 cyclic code
with defining set Z such that Z ∩−2Z ⊆ {0, n3 ,

2n
3 }. Denote

e := |Z ∩−2Z |. Then there exists an [[n + e, 2k − n + e, d ]]
quantum code with d ≥ min{wt(C ), wt(Cu)+ 1, wt(C +C⊥h)+ 2}
where the minimum is taken over the cyclic codes Cu with defining
set Z \ {u} for each u ∈ Z ∩−2Z .
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Proof

Denote n = 3` and let ω denote a primitive cube root of unity in
F4. For t ∈ {0, 1, 2} define the polynomials

bt(x) :=
x3` − 1

x − β
tn
3

=
x3` − 1

x −ωt
=

`−1∑
i=0

(
x3i+2 +ωtx3i+1 +ω2tx3i

)
.

The set {b0, b1, b2} is orthonormal since n is odd.

We now follow the proof of our main theorem, where for the rows
of B we now take the set U = {bt :

tn
3 ∈ Z ∩−2Z }. Note that

bt ∈ C⊥h \ C for each bt ∈ U and also each bt ∈ U is linearly
independent of C ∪ U \ {bt }.
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Proof (cont’d)

Let a ∈ E , a 6= 0. The proof of

wt(a) ≥ min{wt(C ), wt(Cu) + 1, wt(C + C⊥h) + 2}

is similar as in the main theorem (1st and 3rd case). In the 2nd
case we have a ∈ span(C ∪ {bt }), which is the cyclic code with the
defining set Z \ { tn3 }: consider that bt is divisible by∏

k∈Z\{ tn
3
}(x − βk).
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Our record breaking quantum codes

Quantum codes listed on the next slide have a higher minimum
distance than those found at http://codetables.de/
(M. Grassl, Tables of linear codes and quantum codes).

Secondary constructions applied to our codes produce many more
record breaking codes; for example our [[53, 17, 10]] code alone
leads to at least 28 new record breaking codes.

Notation: Cy(n ; a1, . . . , at) is the cyclic code with block length n
and the defining set

⋃t
i=1 Cai .
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Our record breaking quantum codes

quantum code C

[[52, 26, 7]] Cy(51 ; 0, 1, 6, 35)
[[53, 17, 10]] Cy(51 ; 0, 1, 2, 6, 17, 22)
[[54, 8, 12]] Cy(51 ; 0, 1, 3, 9, 17, 22, 34, 35)
[[54, 24, 8]] Cy(51 ; 0, 1, 3, 17, 34, 35)
[[65, 31, 9]] Cy(63 ; 0, 2, 3, 11, 15, 31, 42)
[[86, 8, 19]] Cy(85 ; 0, 10, 13, 15, 18, 21, 29, 34, 37, 41, 57)
[[86, 12, 17]] Cy(85 ; 0, 2, 6, 7, 9, 10, 14, 18, 30, 41)
[[86, 24, 15]] Cy(85 ; 0, 7, 9, 15, 17, 18, 21, 37, 57)
[[86, 56, 8]] Cy(85 ; 0, 7, 30, 34, 57)
[[92, 30, 14]] Cy(91 ; 0, 2, 3, 9, 14, 34)
[[92, 48, 10]] Cy(91 ; 0, 1, 14, 19, 39)

quantum code C

[[85, 9, 19]] Cy(85 ; 3, 7, 9, 10, 17, 19, 21, 30, 37, 57)
[[85, 13, 17]] Cy(85 ; 3, 10, 13, 19, 21, 29, 30, 37, 57)
[[93, 3, 21]] Cy(93 ; 1, 5, 9, 13, 17, 23, 33, 34, 45)
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