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Hamiltonicity and planarity

Whitney, 1931: All 4­connected planar

triangulations are hamiltonian.

Tutte, 1956: All 4­connected planar graphs are

hamiltonian.

We cannot reduce the connectivity:

Herschel graph: 3­connected planar bipartite,

nonhamiltonian.
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Hamiltonicity and planarity

Whitney, 1931: All 4­connected planar

triangulations are hamiltonian.

Tutte, 1956: All 4­connected planar graphs are

hamiltonian.

We cannot reduce the connectivity even for

triangulations:

Reynolds' triangulation, 1931 (alias Goldner­

Harary graph): 3­connected planar

triangulation, nonhamiltonian.
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3­connected planar graphs

But some weakenings of hamiltonicity are true

for 3­connected planar graphs:

Barnette, 1966: they have a 3­tree (spanning

tree of maximum degree � 3; weakening of

hamilton path = 2­tree).

Gao and Richter, 1994: they have a 2­walk

(spanning closed walk using each vertex at

most 2 times; weakening of hamilton cycle =

1­walk).

Chen and Yu, 2002: they have a cycle of

length at least cnlog 3 2.

So what conditions can we add to make them

hamiltonian?

Results on 3­connected planar graphs may

also be regarded as essentially results on

3­connected K 3;3­minor­free graphs.
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Minors of graphs

We say H is a minor of G if

– we can identify each vertex v of H with a

connected subgraph Cv in G;

– Cu and Cv are vertex­disjoint when u 6= v;

– if uv is an edge of H , then there is some

edge between Cu and Cv in G.

We say G is H ­minor­free if it does not have H

as a minor.
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Excluding K 3,t

Chen, Egawa, Kawarabayashi, Mohar and

Ota, 2011: For 3 � a � t, a­connected

K a;t ­minor­free graphs have toughness at

least
2

(t � 1)(a � 1)!
.

Corollary: Using result of Win, 1989, get that

3­connected K 3;t ­minor­free graphs have a

(t + 1) ­tree.

Improved by Ota and Ozeki, 2012: A 3­

connected K 3;t ­minor­free graph has

a (t � 1)­tree if t is even, and

a t­tree if t is odd.

This is best possible.

Chen, Yu and Zang, 2012: A 3­connected

K 3;t ­minor­free graph has a cycle of length

at least � (t)n� (� does not depend on t).
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Excluding K 2,t

Easy: 2­connected K 2;3­minor­free implies K 4

or outerplanar, therefore hamiltonian.

Chen, Sheppardson, Yu and Zang, 2006:

2­connected K 2;t ­minor­free graphs have a

cycle of length at least n=tt � 1.

Any result for 3­connected K 3;t ­minor­free

applies to 3­connected K 2;t ­minor­free.

Note that K 2;t ­minor­free graphs are very

sparse.

Chudnovsky, Reed and Seymour, 2011: K 2;t ­

minor­free graphs have number of edges

m � (t + 1)( n � 1)=2.
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Excluding K 2,5 is not enough

We have examples of 3­connected K 2;5­minor­

free graphs that are nonhamiltonian.

But perhaps there are only �nitely many.
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Planarity and excluding K 2,6 are not
enough

We have examples of 3­connected K 2;6­minor­

free planar graphs that are nonhamiltonian.

Again, perhaps there are only �nitely many.
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In�nitely many examples

We do have an in�nite family of 3­connected

K 2;8­minor­free planar graphs that are

nonhamiltonian:

Replace a particular vertex of Herschel by a

pointed ladder.

So what about a positive result? ...
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Main result

Theorem (E, Marshall, Ozeki and Tsuchiya):

Every 3­connected K 2;5­minor­free planar

graph is hamiltonian.
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Proof: general setup

� Assume nonhamiltonian.

� Take longest cycle C and one component L

of G � V (C).

� L must be joined to C at v1; v2; : : : ; vk , k � 3.

� Each interval I j along C between vj , vj +1

must be nonempty, else longer cycle.

� By 3­connectivity, must be edges leaving the

intervals.
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Proof: important tool

Lemma: Suppose x; y 2 V (H ) and H + xy is

2­connected. Then these are equivalent:

(i) H has no K 2;2­minor rooted at x and y.

(ii) H is xy­outerplanar: it has a spanning

xy­path and all other edges can be drawn

in the plane on one side of that path.
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Proof: some typical situations

Overall idea: case analysis, �nd minor or

longer cycle.

� Minor from edges jumping between intervals.

� Minor from crossing edges inside intervals

(create rooted K 2;2­minors).
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K2,4­minor free graphs

Techniques can also be used for general

3­connected K 2;4­minor free graphs. Not just

hamiltonian; get complete structure.

Theorem (E, Marshall, Ozeki and Tsuchiya):

(i) Every 3­connected K 2;4­minor­free n­vertex

graph belongs to either

– a planar family with 2n � 8 graphs for each

n � 5, or

– ten small examples with 4 � n � 8.

(ii) All 2­connected K 2;4­minor­free graphs can

be obtained by replacing certain edges x i yi in

a graph from (i) by x i yi ­outerplanar graphs.
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Future directions

� Is the number of nonhamiltonian 3­connected

K 2;6­minor­free planar graphs �nite or

in�nite?

� Is the number of nonhamiltonian 3­connected

K 2;5­minor­free general graphs �nite or

in�nite?

� Can we characterize K 2;5­minor­free planar

graphs? Or even general graphs?

� David Wood: Let G be the class of graphs G

that are planar, and such that every minor

of G is a subgraph of a hamiltonian planar

graph. This is a minor­closed class. What

are the minimal forbidden minors besides K 5

and K 3;3? (The `essential' nonhamiltonian

planar graphs.)


