Cycle decompositions of complete multigraphs

Barbara Maenhaut, The University of Queensland Joint work with Darryn Bryant, Daniel Horsley and Ben Smith

Cycle decompositions of the complete multigraph λK_n

A decomposition of λK_n into cycles is a set of cycles that are subgraphs of λK_n whose edge sets partition the edge set of λK_n .

Obvious requirements:

- the sum of the cycle lengths be equal to the number of edges in λK_n ;
- the degree of each vertex of λK_n to be even.

In the case, where the degree is not even, we decompose λK_n into cycles and a perfect matching.

Cycle decompositions of the complete multigraph λK_n : necessary conditions

For $n \ge 3$, $\lambda \ge 1$, to partition the edge set of λK_n into t cycles of lengths m_1, m_2, \dots, m_t , or into t cycles of lengths m_1, m_2, \dots, m_t and a perfect matching, we require that:

- $2 \le m_1, m_2, \dots, m_t \le n$;
- $m_1 + m_2 + \cdots + m_t = \lambda \binom{n}{2}$ when $\lambda (n-1)$ is even;
- $m_1+m_2+\cdots+m_t=\lambda \binom{n}{2}-\frac{n}{2}$ when $\lambda(n-1)$ is odd;
- $\sum_{m_i>2} m_i \ge n \left| \frac{n-1}{2} \right|$ when λ is odd.

A list of integers $m_1, m_2, ..., m_t$ that satisfy the above conditions for particular values of λ and n is said to be (λ, n) -admissible.

For shorthand, if $M=m_1,m_2,\ldots,m_t$, the notation $(M)^*$ -decomposition of λK_n will be used to denote both a decomposition of λK_n into t cycles of lengths m_1,m_2,\ldots,m_t and a decomposition of λK_n into t cycles of lengths m_1,m_2,\ldots,m_t and a perfect matching.

Cycle decompositions of the complete multigraph λK_n : constant length cycles

Theorem: Let λ , n and m be integers with $n, m \geq 3$ and $\lambda \geq 1$.

There exists a decomposition of λK_n into cycles of length m if and only if

$$m \le n$$
; $\lambda (n-1)$ is even; and m divides $\lambda {n \choose 2}$.

There exists a decomposition of λK_n into cycles of length m and a perfect matching if and only if

$$m \le n$$
; $\lambda (n-1)$ is odd; and m divides $\lambda {n \choose 2} - n/2$.

A very brief history of the problem of decomposing λK_n into m-cycles (or into m-cycles and a perfect matching):

- The case $\lambda=1$: Many specific cases solved over many years, but finally solved by Alspach, Gavlas and Šajna (2001, 2002).
- The case $\lambda = 2$: Solved by Alspach, Gavlas, Šajna and Verall by considering decompositions into directed cycles (2003).
- The cases $\lambda \geq 3$: m=3 (Hanani, 1961),
 - $4 \le m \le 6$ (Huang and Rosa, 1973, 1975),
 - $8 \le m \le 16$, m even (Bermond, Huang and Sotteau, 1978),
 - $3 \le m \le 7$, m odd (Bermond and Sotteau, 1977),

m an odd prime (Smith, 2010)

 λ a multiple of m (Smith, 2010),

n odd and λn a multiple of m (Smith, 2010).

Cycle decompositions of the complete multigraph λK_n : Two theorems for mixed length cycles

Long Cycle Theorem: Let $n \ge 3$ and λ be positive integers and let $M = m_1, m_2, ..., m_t$ be a (λ, n) -admissible list of integers. If $m_i \ge \lfloor \frac{n+3}{2} \rfloor$ for i = 1, 2, ..., t, then there exists an $(M)^*$ -decomposition of λK_n .

For example, there exists a $(6,6,6,6,6,7,7,7,7,8,9,9,9,9,9,9,9,10)^*$ -decomposition of $3K_{10}$.

Short Cycle Theorem: Let $n \ge 3$ and λ be positive integers and let $M = m_1, m_2, ..., m_t$ be a non-decreasing (λ, n) -admissible list of integers such that either $m_t = m_{t-1} \le \lfloor \frac{n+1}{2} \rfloor$ or $m_t = m_{t-1} + 1 \le \lfloor \frac{n+2}{2} \rfloor$. Then there exists an $(M)^*$ -decomposition of λK_n .

For example, there exists a $(3,3,3,3,3,4,4,4,5,5)^*$ -decomposition of K_{10} and a $(3,3,3,3,3,4,4,5,6)^*$ -decomposition of K_{10} .

Cycle decompositions of the complete multigraph λK_n : Start with decompositions into closed trails

Theorem (Balister) Let λ and n be positive integers with $n \geq 3$ and $\lambda(n-1)$ even. There exists a decomposition of λK_n into t closed trails of lengths m_1, m_2, \ldots, m_t if and only if

- $2 \le m_1, m_2, ..., m_t$;
- $m_1 + m_2 + \dots + m_t = \lambda \binom{n}{2}$; and
- $\sum_{m_i > 2} m_i \ge \binom{n}{2}$ when λ is odd.

Theorem Let λ and n be positive integers with $n \geq 4$ and $\lambda(n-1)$ odd. There exists a decomposition of λK_n into t closed trails of lengths m_1, m_2, \ldots, m_t and a perfect matching if and only if

- $2 \le m_1, m_2, ..., m_t$;
- $m_1 + m_2 + \dots + m_t = \lambda \binom{n}{2} \frac{n}{2}$; and
- $\sum_{m_i>2} m_i \geq \binom{n}{2} \frac{n}{2}$.

Plan: For $M=m_1,m_2,\ldots,m_t$, to get an $(M)^*$ -decomposition of λK_n , we start with a decomposition of λK_n into closed trails of lengths m_1,m_2,\ldots,m_t (and maybe a perfect matching). Split the closed trails into cycles and then manipulate (modify and glue) these cycles in such a way as to get cycles of lengths m_1,m_2,\ldots,m_t (and maybe a perfect matching).

Cycle decompositions of the complete multigraph λK_n : Outline of proof for short cycle theorem

Let m_1, m_2, \dots, m_t be a non-decreasing (λ, n) -admissible list, in which $m_t = m_{t-1} \le \lfloor \frac{n+1}{2} \rfloor$ or $m_t = m_{t-1} + 1 \le \lfloor \frac{n+2}{2} \rfloor$. To find an $(m_1, m_2, \dots, m_t)^*$ -decomposition of λK_n :

Start with a decomposition of λK_n into closed trails of lengths $m_1, m_2, ..., m_t$. If these all happen to be cycles, you are done.

If the biggest closed trails (lengths m_{t-1} and m_t) are not cycles, delete those two closed trails from the decomposition (they become the leave of a packing) and use edge switches to make them into cycles of lengths m_{t-1} and m_t . (This can be done since m_{t-1} and m_t differ by at most one.)

Then for each remaining closed trail (say of length m_i) that is not a cycle:

Delete the closed trail from the decomposition (it becomes the leave) and use edge switches to spread it out to a collection of almost vertex-disjoint cycles of lengths $a_1, a_2, ..., a_s$, where $a_1 + a_2 + \cdots + a_s = m_i$.

Use edge switches to join the almost vertex-disjoint cycles into a chain of cycles.

Add the cycle of length m_t to the cycle chain as the leave of a packing and use edge switches to obtain a cycle of length m_t and a cycle of length m_i .

Thank you for your attention!