On the minimum distance of q-ary nonlinear codes

Jaume Pujol, Mercè Villanueva, Fanxuan Zeng

Combinatorics, Coding and Security Group (CCSG)
Department of Information and Communications Engineering (dEIC)
Autonomous University of Barcelona (UAB)

June 10-13, CanaDAM 2013, St.John’s
Outline

Introduction

Minimum weight and minimum distance

Improvements on minimum weight and minimum distance

Minimum weight and minimum distance of q-ary codes

Conclusions and future research
Hamming Weight: or simply weight, of a vector $v = (v_1, \ldots, v_n)$ is the number of its entries which are nonzero.

Hamming Distance: or simply distance, between two vectors $v = (v_1, \ldots, v_n)$ and $w = (w_1, \ldots, w_n)$ is the number of entries where they differ.

An $(n, M, d)_q$ code C is a subset of \mathbb{F}_q^n, where \mathbb{F}_q is a finite field of q elements.

We start from Binary Codes, which are subsets of \mathbb{F}_2^n.
Introduction

Given a code C, the problem of storing C in memory and finding out the minimum (Hamming) weight $w(C)$ and minimum (Hamming) distance $d(C)$ are well-known problems.

- If C is linear, then it can be compactly represented using a generator matrix. Moreover, $d(C) = w(C)$.
- If C is nonlinear, then a solution would be to know whether it has another structure or not.

For example, there are binary codes which have a \mathbb{Z}_4-linear or $\mathbb{Z}_2 \mathbb{Z}_4$-linear structure and, therefore, they can also be compactly represented using a quaternary generator matrix.
Given a code C, the problem of storing C in memory and finding out the minimum (Hamming) weight $w(C)$ and minimum (Hamming) distance $d(C)$ are well-known problems.

- If C is linear, then it can be compactly represented using a generator matrix. Moreover, $d(C) = w(C)$.

- If C is nonlinear, then a solution would be to know whether it has another structure or not.

For example, there are binary codes which have a \mathbb{Z}_4-linear or $\mathbb{Z}_2\mathbb{Z}_4$-linear structure and, therefore, they can also be compactly represented using a quaternary generator matrix.
In general, binary codes without any of these structures can be represented as the union of cosets of a binary linear subcode of C.

$$C = \bigcup_{i=0}^{t} \left(K + c_i \right),$$

where $c_0 = 0$, $t + 1 = M/2^k$, $M = |C|$ and

$$K = \{ x \in \mathbb{Z}_2^n \mid x + C = C \}.$$

The kernel K is the largest linear subcode for which it is true. The coset leaders are given by the set of t vectors: $\{c_1, \ldots, c_t\}$.

On the minimum distance of q-ary nonlinear codes

Introduction

In general, binary codes without any of these structures can be represented as the union of cosets of a binary linear subcode of C.

$$C = \bigcup_{i=0}^{t} \left(K + c_i \right),$$

where $c_0 = 0$, $t + 1 = M/2^k$, $M = |C|$ and

$$K = \{ x \in \mathbb{Z}_2^n \mid x + C = C \}.$$

The kernel K is the largest linear subcode for which it is true. The coset leaders are given by the set of t vectors: $\{c_1, \ldots, c_t\}$.

Introduction

Since K is linear, the binary code C can be represented by the generator matrix of K and the set of coset leaders instead of a set of all its codewords.

Then, the code C take up a memory space of order $O(n(k + t))$.

Example 1

Memory space of binary codes of length n, $M = 2^{19}$ codewords and different dimension of kernel:

<table>
<thead>
<tr>
<th>dimension of kernel k</th>
<th>0</th>
<th>1</th>
<th>...</th>
<th>17</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>number coset leaders t</td>
<td>2^{19}</td>
<td>$2^{18} - 1$</td>
<td>...</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>memory space</td>
<td>$2^{19}n$</td>
<td>$2^{18}n$</td>
<td>...</td>
<td>$20n$</td>
<td>$19n$</td>
</tr>
</tbody>
</table>
Minimum weight and distance

• For linear codes, the best algorithm to obtain the minimum weight/distance based on the enumeration of some codewords is the Brouwer-Zimmermann algorithm.

• For nonlinear codes, there is no other algorithms but the enumeration of all codeswords, that is, the brute force algorithm.
A short introduction to Brouwer-Zimmermann’s Algorithm

Minimum weight and minimum distance

Minimum weight of enumerated vectors

Lower bound of unenumerated vectors $h(r+1)$
Minimum weight and distance

Extend Coset: Given a binary code \(C \) and a vector \(v \), denote
\(K_v = K \cup (K + v) \) as an extend coset of \(C \). Since \(K \) is linear, then \(K_v \) is also linear, and can be constructed as \(\langle \text{Basis}(K), v \rangle \).

Let \(C = \bigcup_{i=0}^{t} (K + c_i) \) with \(t \geq 2 \).

Proposition / Algorithm 1 (MinW)

The minimum weight of \(C \) is \(\min(\{w(K_{c_i}) \mid 1 \leq i \leq t\}) \).

Proposition / Algorithm 2 (MinD)

The minimum distance of \(C \) is \(\min(\{w(K_{c_i}) \mid 1 \leq i \leq t\} \cup \{w(K_{c_i+c_j}) \mid 1 \leq i < j \leq t\}) \).
On the minimum distance of q-ary nonlinear codes

Minimum weight and minimum distance

Explanation of Algorithm 2 (MinD)

\[d(K + c_i, K + c_j) = w(K + c_i + c_j) \]
Example 2

Let K be the binary linear code of length $n = 31$, dimension $k = 5$, and $d(K) = 16$, constructed as the dual of the binary Hamming code of length $n = 31$. Let $C = \bigcup_{i=0}^{3} (K + c_i)$, where $c_0 = 0$, and the coset leaders are:

\[c_1 = (0010001110011010011110001011110)\]
\[c_2 = (0101101010111100101110100111101)\]
\[c_3 = (0000011100011101101000111010111)\]

It is easy to check that the minimum weight of C is $w(C) = 10$ and its minimum distance $d(C) = 8$.

<table>
<thead>
<tr>
<th></th>
<th>minimum weight</th>
<th>minimum distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brute Force</td>
<td>0.00018s</td>
<td>0.00840s</td>
</tr>
<tr>
<td>Algorithm 1 / 2</td>
<td>0.00060s</td>
<td>0.00126s</td>
</tr>
</tbody>
</table>
Example 2

Let K be the binary linear code of length $n = 31$, dimension $k = 5$, and $d(K) = 16$, constructed as the dual of the binary Hamming code of length $n = 31$. Let $C = \bigcup_{i=0}^{3} (K + c_i)$, where $c_0 = 0$, and the coset leaders are:

$c_1 = (0010001110011010011110001011110)$
$c_2 = (0101101010111100101110100111101)$
$c_3 = (000001110001110110100011101011)$

It is easy to check that the minimum weight of C is $w(C) = 10$ and its minimum distance $d(C) = 8$.

<table>
<thead>
<tr>
<th></th>
<th>minimum weight</th>
<th>minimum distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brute Force</td>
<td>0.00018s</td>
<td>0.00840s</td>
</tr>
<tr>
<td>Algorithm 1 / 2</td>
<td>0.00060s</td>
<td>0.00126s</td>
</tr>
</tbody>
</table>

Note that sometimes a brute force calculation can be a faster way.
Time of computing $w(C)$ using Algorithm 1 (MinW) compared with brute force, for binary nonlinear codes of length $n = 100$, size $M = 2^{15} \cdot 31$, and kernel of dimension $k \in \{7, \ldots, 15\}$.
Time of computing $d(C')$ using Algorithm 2 (MinD) compared with brute force, for binary nonlinear codes of length $n = 100$, size $M = 2^7 \cdot 31$, and kernel of dimension $k \in \{3, \ldots, 7\}$.

![Graph showing time comparison between Algorithm MinD and brute force. The x-axis represents the dimension of the kernel, ranging from 3 to 7, and the y-axis represents the time in seconds, ranging from 0 to 140.]
All these algorithms are based on the enumeration of codewords, adding together codewords and deciding the minimum weight of codewords.

The performance measurement of these computations is referred as \textbf{work}. An estimate of the total work an algorithm requires is referred as \textbf{work factor}.
Work factor of binary linear codes

For a binary linear code K of length n and dimension k, the minimum weight and minimum distance are the same, the work factor of computing them using Zimmermann algorithm is:

$$WF_{Zim} = (n - k) \left\lceil \frac{n}{k} \right\rceil \sum_{r=1}^{\bar{r}} \binom{k}{r}$$

where \bar{r} is the smallest natural number such that

$$\left\lceil \frac{n}{k} \right\rceil (\bar{r} + 1) + \max(0, \bar{r} + 1 - (k - n \mod k)) \geq w(C).$$
Work factor of minimum weight

For a binary nonlinear code of length n, dimension of kernel k and number of coset leaders t, we can estimate the work factor:

Brute Force Algorithm: Enumerating every codeword of the code and examining their weights, the work factor is:

$$n \cdot M = n \cdot (t + 1) \cdot 2^k$$

Algorithm MinW: The work factor is:

$$\sum_{i=1}^{t} \left((n - (k + 1)) \left\lfloor \frac{n}{k + 1} \right\rfloor \sum_{r=1}^{\bar{r}_i} \binom{k + 1}{r} \right)$$

where \bar{r}_i is the smallest natural number such that

$$\left\lfloor \frac{n}{k + 1} \right\rfloor (\bar{r}_i + 1) + \max(0, \bar{r}_i + 1 - (k + 1 - n \mod k + 1)) \geq w(K_{ci}).$$
Work factor of minimum distance

Brute Force Algorithm: Enumerating every pair of codewords of the code, and exam the distance between them, the work factor is:

\[n \cdot \binom{M}{2} = n \cdot \binom{2^k(t+1)}{2} \]

Algorithm MinD: The work factor is:

\[
\sum_{i=0}^{t-1} \left(\sum_{j=i+1}^{t} ((n - (k + 1))\lceil n/(k + 1) \rceil \sum_{r=1}^{\bar{r}_{i,j}} \binom{k + 1}{r}) \right)
\]

where \(\bar{r}_{i,j} \) is the smallest natural number such that

\[
\left\lfloor \frac{n}{(k + 1)} \right\rfloor (\bar{r}_{i,j}+1) + \max(0, \bar{r}_{i,j}+1-(k+1-n \mod (k+1))) \geq w(K_{c_i+c_j}).
\]
Work factor upper bounds

The minimum weight of an extend coset $K_v = K \cup (K + v)$ relies on the minimum weight of itself, so it is hard to estimate the work factor.

However, note that $w(K_v) \leq w(K)$, where $w(K)$ is the minimum weight of the kernel. Therefore, we can obtain an upper bound by replacing $w(K_v)$ with $w(K)$.
Work factor upper bounds

Minimum Weight Upper Bound:

\[t \cdot ((n - (k + 1)) \lceil n/(k + 1) \rceil) \sum_{r=1}^{\bar{r}} \binom{k + 1}{r} \]

Minimum Distance Upper Bound:

\[\left(\frac{t + 1}{2} \right) \cdot ((n - (k + 1)) \cdot \lceil n/(k + 1) \rceil) \sum_{r=1}^{\bar{r}} \binom{k + 1}{r} \]

where \(\bar{r} \) is the smallest natural number such that

\[\lceil n/(k + 1) \rceil (\bar{r} + 1) + \max(0, \bar{r} + 1 - (k + 1 - n \mod k + 1)) \geq w(K). \]
Work factor and work factor upper bound of minimum weight for binary codes of length $n = 100$, size $M = 2^{17} \cdot 31$, and dimension of kernel $k \in \{7, \ldots, 17\}$.
Work factor and work factor upper bound of minimum distance for binary codes of length $n = 100$, size $M = 2^7 \cdot 31$, and dimension of kernel $k \in \{3, \ldots, 7\}$.

![Bar chart showing work factor and upper bound of Algorithm MinD for different dimensions of kernel](chart.png)

- **Upper bound of Algorithm MinD**
- **Algorithm MinD**
Improvement on Algorithm MinW and MinD

According to Algorithm MinW and MinD, we can obtain the minimum weight and distance of a binary code with t coset leaders by getting the minimum weight of several extend cosets.

Therefore, the codewords in the kernel are checked several times:
• t times for minimum weight in Algorithm MinW.
• $\binom{t+1}{2}$ times for minimum distance in Algorithm MinD.
An improved algorithm is brought to avoid the repetition.

Algorithm 3 (IMinD)

1. Add the all-zero codeword into the set of coset leaders.
2. Add a coset leader to the basis of the kernel to form a binary linear code of rank $k + 1$ (for the added all-zero coset leader, the rank is still k).
3. Use Gaussian elimination to make the coordinates of information set on the coset leader be 0. Then delete these coordinates in all rows.
4. During every stage of enumerating r rows in Zimmermann’s algorithm, select r rows from the basis of the kernel and always select the coset leader row.
On the minimum distance of q-ary nonlinear codes

Improvements on minimum weight and minimum distance

Explanation of Algorithm 3 (IMinD)
Work factor and upper bounds of Algorithm IMinD

Minimum Distance:

\[
\sum_{i=0}^{t} \left(\sum_{j=i+1}^{t} ((n - k)\lceil n/k \rceil \sum_{r=1}^{\bar{r}_{i,j}} \binom{k}{r}) \right)
\]

where \(\bar{r}_{i,j}\) is the smallest natural number such that

\[
\left\lfloor \frac{n}{k} \right\rfloor (\bar{r}_{i,j} + 1) + \max(0, \bar{r}_{i,j} + 1 - (k - n \mod k)) \geq w(K_{c_i + c_j}).
\]

Upper Bounds:

\[
\left(\binom{t+1}{2} \right) + 1 \cdot (n - k) \cdot \left\lceil \frac{n}{k} \right\rceil \sum_{r=1}^{\bar{r}} \binom{k}{r}.
\]

where \(\bar{r}\) is the smallest natural number such that

\[
\left\lfloor \frac{n}{k} \right\rfloor (\bar{r} + 1) + \max(0, \bar{r} + 1 - (k - n \mod k)) \geq w(K).
\]
Work factor of minimum distance using Algorithm 2 (MinW) and 3 on codes of length $n = 100$, kernel $k \in \{7, \ldots, 15\}$, size $M = 2^{17} \cdot 31$.
Minimum weight/distance of q-ary codes

Problem: If K is a linear code,

Binary Codes: $K \cup (K + c)$ is a linear code which can be obtained by adding c in the generator matrix.

q-ary Codes: $K \cup (K + c)$ is not necessarily a linear code, and it can not be obtained by adding c in the generator matrix.

Lemma 3

For a $[n, k, d]_q$ code K and a vector $v \in \mathbb{F}_q^n$, the code $K_v = \langle \text{Basis}(K), v \rangle$ is a linear code, and the minimum weight $w(K_v) = w(K(v))$, where $K(v) = K \cup (K + v)$.
Let $C = \bigcup_{i=0}^{t} (K + c_i)$ be an $(n, M, d)_q$ code given by kernel K and a list of coset leaders $\{c_1, c_2, ..., c_t\}$.

Proposition / Algorithm 4 (MinWq)

The minimum weight of C is $\text{min}(\{w(K_{c_i}) \mid 1 \leq i \leq t\})$.

Proposition / Algorithm 5 (MinDq)

The minimum distance of C is $\text{min}(\{w(K_{c_i}) \mid 1 \leq i \leq t\} \cup \{w(K_{c_i+c_j}) \mid 1 \leq i < j \leq t\})$.
On the minimum distance of q-ary nonlinear codes

Minimum weight and minimum distance of q-ary codes

Improved minimum weight/distance of q-ary codes

Let $C = \bigcup_{i=0}^{t} (K + c_i)$ be an $(n, M, d)_q$ code given by kernel K and a list of coset leaders $\{c_1, c_2, ..., c_t\}$.

Proposition / Algorithm 6 (IMinWq)

_The minimum weight of C is $\min(\{w(K + c_i) \mid 1 \leq i \leq t\})$._

Proposition / Algorithm 7 (IMinDq)

_The minimum distance of C is
\[\min(\{w(K + c_i) \mid 1 \leq i \leq t\} \cup \{w(K + c_i + c_j) \mid 1 \leq i < j \leq t\})\]._

Note that for the q-ary codes, since the coset $K + c_i$ contains only $1/q$ codewords as K_v, this improvement save much time.
Minimum distance work factor of Algorithm IMinDq

Work Factor:

$$
\sum_{i=0}^{t} \left(\sum_{j=i+1}^{t} (n - k) \left\lceil \frac{n}{k} \right\rceil \sum_{r=1}^{\bar{r}_{i,j}} \binom{k}{r} (q - 1)^{r-1} \right)
$$

where $\bar{r}_{i,j}$ is the smallest natural number such that

$$
\left\lfloor \frac{n}{k} \right\rfloor (\bar{r}_{i,j} + 1) + \max(0, \bar{r}_{i,j} + 1 - (k - n \mod k)) \geq w(K_{c_i+c_j}).
$$

Upper Bound:

$$
\left(\binom{t+1}{2} + 1 \right) \cdot (n - k) \cdot \left\lceil \frac{n}{k} \right\rceil \sum_{r=1}^{\bar{r}} \binom{k}{r} (q - 1)^{r-1}.
$$

where \bar{r} is the smallest natural number such that

$$
\left\lfloor \frac{n}{k} \right\rfloor (\bar{r} + 1) + \max(0, \bar{r} + 1 - (k - n \mod k)) \geq w(K).
$$
Upper bounds of work factor of minimum distance using Algorithm IMinDq and brute force on codes over \mathbb{F}_3 of length $n = 100$, dimension of kernel $k \in \{3, \ldots, 9\}$, size $M = 3^9 \cdot 31$, and $w(K) = 35$.

![Graph showing work factor and dimension of kernel for different values of k.]
Conclusions

- We applied the structure of the kernel and a set of coset leaders to represent a code C to store it more compactly.

- Based on this structure, we developed several algorithms to decide the minimum weight and minimum distance of a code C.

- We evaluated the performance of the algorithms in theory and partly in practical test.
Future research

- Apply the algorithms, especially for the general q-ary codes.

- Try to find a point based on the parameters from where we can decide to use the improved algorithms.

- Use the minimum weight to decode nonlinear binary codes.

- Use these algorithms to look for better nonlinear codes with big minimum distance.
Bibliography

Thank you!