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Motivation: Loss of Slater CQ/Facial reduction

optimization algorithms rely on the KKT system;
they require that some constraint qualification (CQ) holds
(e.g. Slater’s CQ/strict feasibility for convex conic optimization)

However, surprisingly many conic opt, SDP relaxations,
instances arising from applications (QAP, GP, strengthened MC, SNL,
POP, Molecular Conformation)
do not satisfy Slater’s CQ/are degenerate

lack of Slater’s CQ results in: unbounded dual solutions;
theoretical and numerical difficulties,
in particular for primal-dual interior-point methods.

solution:
- theoretical facial reduction (Borwein, W.’81)
- preprocess for regularized smaller problem (Cheung, Schurr, W.’11)
- take advantage of degeneracy (for SNL Krislock, W.’10; for side chain
positioning Burkowski, Cheung, W. ’13 )

1



Motivation/Introduction
Preprocessing/Regularization

Applications: QAP, GP, SNL, Molecular conformation ...

Outline: Regularization/Facial Reduction

1 Motivation/Introduction

2 Preprocessing/Regularization
Abstract convex program

LP case
CP case

Cone optimization/SDP case

3 Applications: QAP, GP, SNL, Molecular conformation ...
Side Chain Positioning
Implementation
Numerics

2



Motivation/Introduction
Preprocessing/Regularization

Applications: QAP, GP, SNL, Molecular conformation ...

Abstract convex program
Cone optimization/SDP case

Background/Abstract convex program

(ACP) inf
x

f (x) s.t. g(x) �K 0, x ∈ Ω

where:

f : Rn → R convex; g : Rn → R
m is K -convex

K ⊂ R
m closed convex cone; Ω ⊆ R

n convex set
a �K b ⇐⇒ b − a ∈ K
g(αx + (1 − αy)) �K αg(x) + (1 − α)g(y),

∀x , y ∈ R
n, ∀α ∈ [0, 1]

Slater’s CQ: ∃ x̂ ∈ Ω s.t. g(x̂) ∈ − int K (g(x) ≺K 0)

guarantees strong duality

essential for efficiency/stability in primal-dual interior-point
methods
((near) loss of strict feasibility correlates with number of
iterations and loss of accuracy)3
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Case of Linear Programming, LP

Primal-Dual Pair: A,m × n / P = {1, . . . ,n} constr. matrix/set

(LP-P)
max b⊤y
s.t. A⊤y ≤ c

(LP-D)
min c⊤x
s.t. Ax = b, x ≥ 0.

Slater’s CQ for (LP-P) / Theorem of alternative

∃ŷ s.t. c − A⊤ŷ > 0,
((

c − A⊤ŷ
)

i > 0,∀i ∈ P =: P<
)

iff
Ad = 0, c⊤d = 0, d ≥ 0 =⇒ d = 0 (∗)

implicit equality constraints: i ∈ P= := P\P<

Finding solution 0 6= d∗ to (∗) with max number of non-zeros
determines (where F y is feasible set)

d∗
i > 0 =⇒ (c − A⊤y)i = 0,∀y ∈ F y (i ∈ P=)
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Rewrite implicit-equalities to equalities/ Regularize LP

Facial Reduction: A⊤y ≤f c; minimal face f E R
n
+

(LPreg -P)
max b⊤y
s.t. (A<)⊤y ≤ c<

(A=)⊤y = c=
(LPreg -D)

min (c<)⊤x< + (c=)⊤x=

s.t.
[

A< A=
]

(

x<

x=

)

= b

x< ≥ 0, x= free

Mangasarian-Fromovitz CQ (MFCQ) holds

(after deleting redundant equality constraints!)
(

i ∈ P< i ∈ P=

∃ŷ : (A<)⊤ŷ < c< (A=)⊤ŷ = c=

)

(A=)⊤ is onto

MFCQ holds iff dual optimal set is compact

Numerical difficulties if MFCQ fails; in particular for interior
point methods! Modelling issue? (minimal representation)
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Abstract convex program
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Facial Reduction/Preprocessing

Linear Programming Example, x ∈ R
2

max
(

2 6
)

y

s.t.









−1 −1
1 1
1 −1
−2 2









y ≤









1
2
1
−2









(

1
0

)

feasible; weighted last two rows
[

1 −1 1
−2 2 −2

]

sum to

zero. P< = {1,2},P= = {3,4}

Facial reduction; substit. for y ; get 1 dim vrble; 2 dim slack
(

y1

y2

)

=

(

1
0

)

+ t
(

1
1

)

,

(

−1
1

)

t ≤
(

1
3
2

)

, t∗ = −1, val∗ = −6.
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Case of ordinary convex programming, CP

(CP) sup
y

b⊤y s.t. g(y) ≤ 0,

where

b ∈ R
m; g(y) =

(

gi(y)
)

∈ R
n, gi : R

m → R convex, ∀i ∈ P

Slater’s CQ: ∃ ŷ s.t. gi(ŷ) < 0,∀i (implies MFCQ)

Slater’s CQ fails implies implicit equality constraints exist,
i.e.:
P= := {i ∈ P : g(y) ≤ 0 =⇒ gi(y) = 0} 6= ∅
Let P< := P\P= and

g< := (gi)i∈P< ,g= := (gi)i∈P=
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Rewrite implicit equalities to equalities/ Regularize CP

(CP) is equivalent to g(y) ≤f 0, f is minimal face

(CPreg)
sup b⊤y
s.t. g<(y) ≤ 0

y ∈ F = or (g=(y) = 0)

where F= := {y : g=(y) = 0}. Then
F = = {y : g=(y) ≤ 0}, so is a convex set!

Slater’s CQ holds for (CPreg) ∃ŷ ∈ F = : g<(ŷ) < 0

modelling issue again?
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Faithfully convex case

Faithfully convex function f (Rockafellar’70 )

f affine on a line segment only if affine on complete line
containing the segment (e.g. analytic convex functions)

F= = {y : g=(y) = 0} is an affine set

Then:
F= = {y : Vy = Vŷ} for some ŷ and full-row-rank matrix V .

Then MFCQ holds for

(CPreg)
sup b⊤y
s.t. g<(y) ≤ 0

Vy = Vŷ
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Semidefinite Programming, SDP

K = Sn
+ = K ∗ nonpolyhedral cone!

where K ∗ := {φ : 〈φ, x〉 ≥ 0,∀x ∈ K} dual/polar cone

(SDP-P) vP = sup
y∈Rm

b⊤y s.t. g(y) := A∗y − c �Sn
+

0

(SDP-D) vD = inf
x∈Sn

〈c, x〉 s.t. Ax = b, x �Sn
+

0

where:

PSD cone Sn
+ ⊂ Sn symm. matrices

c ∈ Sn , b ∈ R
m

A : Sn → R
m is a linear map, with adjoint A∗

Ax = (trace Aix) ∈ R
m

A∗y =
∑m

i=1 Aiyi ∈ Sn
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Slater’s CQ/Theorem of Alternative

(Assume feasibility: ∃ ỹ s.t. c −A ∗ỹ � 0.)

∃ ŷ s.t. s = c −A∗ŷ ≻ 0 (Slater)

iff

Ad = 0, 〈c,d〉 = 0, d � 0 =⇒ d = 0 (∗)

11



Motivation/Introduction
Preprocessing/Regularization

Applications: QAP, GP, SNL, Molecular conformation ...

Abstract convex program
Cone optimization/SDP case

Faces of Cones - Useful for Charact. of Opt.

Face

A convex cone F is a face of K , denoted F E K , if
x , y ∈ K and x + y ∈ F =⇒ x , y ∈ F
(F ⊳ K proper face)

Conjugate Face

If F E K , the conjugate face (or complementary face) of F is
F c := F⊥ ∩ K ∗ E K ∗

If x ∈ ri(F ), then F c = {x}⊥ ∩ K ∗.

Minimal Faces

fP := faceF s
P E K , F s

P is primal feasible set
fD := faceF x

D E K ∗, F x
D is dual feasible set

where: K ∗ denotes the dual (nonnegative polar) cone;
face S denotes the smallest face containing S.
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Abstract convex program
Cone optimization/SDP case

Regularization Using Minimal Face

Borwein-W.’81 , fP = faceF s
P

(SDP-P) is equivalent to the regularized

(SDPreg-P) vRP := sup
y

{〈b, y〉 : A ∗y �fP c}

(slacks: s = c −A ∗y ∈ fp )

Lagrangian Dual DRP Satisfies Strong Duality:

(SDPreg-D) vDRP := inf
x

{〈c, x〉 : A x = b, x �f∗P
0}

= vP = vRP

and vDRP is attained.
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Conclusion Part I

Minimal representations of the data regularize (P);

Using the minimal face fP regularizes SDPs.
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Part II: Applications of SDP where Slater’s CQ fails

Instances of SDP relaxations of NP-hard combinatorial
optimization problems with fixed row and column sum and 0,1
constraints

Quadratic Assignment (Zhao-Karish-Rendl-W.’96 )

Graph partitioning (W.-Zhao’99 )

Low rank problems

Sensor network localization (SNL) problem (Krislock-W.’10,
Krislock-Rendl-W.’10) (SNL, highly (implicit)
degenerate/low rank solutions)

Molecular conformation (Burkowski-Cheung-W.’11 )
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Side Chain Positioning

For our purposes, a protein macromolecule is a chain of
amino acids, also called residues.

For more tractable prediction, assume atoms in the
backbone are fixed; then look for conformation of side
chains for each residue.

A further approximation inolves a discretization of possible
side chain conformations that rely on rotamericity.

Let G = (V , E ,E) be a weighted, undirected graph with
node set V =

⋃p
i=1 V i , where each subset V i is a set

consisting of rotamers for the i-th amino acid side
chain/residue

p is the number of residues; edge set E has weight
(energy) Euv associated with edge uv ∼= (u, v) ∈ E .
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Integer Quadratic Program, (IQP)

(IQP)

valIQP = min
∑

(u,v)∈En

Euvxuxv

s.t.
∑

u∈V k

xu = 1, ∀k = 1, . . . ,p

xu ∈ {0,1},∀u ∈ V ,

where xu =

{

1 if rotamer u is chosen
0 otherwise

.

Rewrite IQP as

(IQP)

valIQP = min xT Ex
s.t. Ax − ēp = 0 ∈ R

p

x =
[

vT
1 vT

2 · · · vT
p
]T

∈ {0,1}n0

vk ∈ {0,1}mk , k = 1, . . . ,p.
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Quadratic, Quadratic Program, (QQP)

Redundant constraints within {}

(QQP)

valIQP = valQQP = minx xT Ex
s.t. ‖ēp − Ax‖2 = 0

x ◦ x − x = 0
{ (

AT A − I
)

◦
(

xxT
)

= 0
(xxT )ij ≥ 0, ∀ (i , j) ∈ I,

}

Recipe for SDP relaxation

form the Lagrangian relaxation;

apply homogenization;

simplify to obtain the dual and an equivalent SDP;

take the dual to obtain the SDP relaxation of the original
IQP and remove any redundant (linearly dependent)
constraints.
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SCQ fails for SDP relaxation

Facially Reduced Primal-Dual Pair

min
X∈Sn−p

〈

Ê ,X
〉

s.t. arrow(X ) = 0,
d bdiag(X ) = 0,
X00 = 1,
X � 0,

max
t,w ,Λ

t

s.t. 1O(t) + Arrow(w) + dBDiag(Λ) � Ê .
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Rounding to integral solution

Nearest feasible solution of IQP to c ∈ R
n0

min
x

‖x − c‖ s.t. Ax = ē, x ∈ {0, 1}n0 (1)

Obtaining IQP solution from SDP solution

Perron-Frobenis rounding

Let u ∈ R
n the principal eigvec. of Y ∗, and u′ := p

u2+...+un

( u2

...
un

)

.

=⇒ u′ satisfies Au′ = ē, and empirically u′ ∈ [0, 1]n0 .

=⇒ Take c = u′ and solve (1) for ū′.

Projection rounding
Let

(

1
u′′

)

be the diagonal of Y ∗.

=⇒ u′′ satisfies Au′′ = ē, u′′ ∈ [0, 1]n0 .

=⇒ Take c = u′′ and solve (1) for ū′′.
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Adding nonnegativity constraints

Yij ≥ 0 is a valid constraint, ∀ (i , j), and tightens the SDP relaxation.

But it is too expensive to enforce the constraint Y ≥ 0 in the SDP
relaxation.

Use the cutting plane method:
repeat:
(1) solve SDP;
(2) add cutting planes (constraints Yij ≥ 0).

How to choose cutting planes

Cutting planes are not needed on diagonal blocks (which are diagonal).

Some Eij are very large =⇒ Yij is likely to be negative.

Rule: in each iter., choose (i , j) such that

(1) Yij < 0,
(2) EijYij << 0 (i.e., Eij >> 0).
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Measuring the quality of rounded solutions

Metrics of IQP solution quality

Let x be a feasible solution of IQP. Then

xT Ex ≥ valIQP ≥ d∗
.

The fraction xT Ex−valIQP
valIQP

gives a measure of the quality of x .

But valIQP is not known.

Use the relative difference instead:

xT Ex − d∗

1
2 |x

T Ex + d∗|
≥

xT Ex − valIQP
1
2 |x

T Ex + valIQP |
.
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Computation results

Table: Results on medium-sized proteins

run time (min) relative diff relative gap
Protein n0 p

SCPCP orig SCPCP orig SCPCP orig

1B9O 265 112 0.64 254.85 1.19E-11 2.14 1.45E-09 1.24
1C5E 200 71 2.59 70.63 4.93E-11 2.01 5.02E-09 1.00
1C9O 207 53 2.15 66.50 3.35E-12 2.00 2.77E-10 1.02
1CZP 237 83 1.90 143.95 8.30E-11 2.24 1.03E-08 1.00
1MFM 216 118 0.19 102.11 2.01E-11 2.00 1.24E-09 1.09
1QQ4 365 143 5.70 - 6.49E-11 - 2.27E-08 -
1QTN 302 134 5.04 - 2.24E-11 - 4.12E-09 -
1QU9 287 101 7.55 - 1.80E-11 - 5.52E-09 -
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Computation results

Table: Results on large proteins (SCPCP only)

Protein n0 p run time rel. diff rel. gap numcut # iter Final
(hr) # cuts

1CEX 435 146 0.08 1.26E-11 5.57E-09 40 9 485
1CZ9 615 111 3.96 2.98E-13 6.37E-10 60 25 1997
1QJ4 545 221 0.15 5.31E-12 1.14E-09 60 14 1027
1RCF 581 142 0.85 3.71E-12 1.15E-08 60 17 1305
2PTH 930 151 29.65 8.69E-09 7.63E-06 120 34 7247
5P21 464 144 0.31 1.39E-12 7.33E-10 40 16 822
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Run times when using only facial red. or cutting planes

Figure: Performance profile for the use of facial reduction and cutting
planes
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Conclusion Part II

SCQ fails for many SDP relaxations of hard combinatorial
problems.

facial reduction reduces size of problem and improves
efficient/stability in particular when the structure is known.
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Thanks for your attention!

Taking advantage of Degeneracy and Special
Structure in Linear Cone Optimization

Yuen-Lam Cheung and Henry Wolkowicz

Dept. Combinatorics and Optimization, University of Waterloo

at: CanaDAM 2013, June 10-13,
Memorial University of Newfoundland
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