Taking advantage of Degeneracy and Special Structure in Linear Cone Optimization

Yuen-Lam Cheung and Henry Wolkowicz

Dept. Combinatorics and Optimization, University of Waterloo

at: CanaDAM 2013, June 10-13, Memorial University of Newfoundland

4

Motivation: Loss of Slater CQ/Facial reduction

- optimization algorithms rely on the KKT system; they require that some constraint qualification (CQ) holds (e.g. Slater's CQ/strict feasibility for convex conic optimization)
- However, surprisingly many conic opt, SDP relaxations, instances arising from applications (QAP, GP, strengthened MC, SNL, POP, Molecular Conformation) do not satisfy Slater's CQ/are degenerate
- lack of Slater's CQ results in: unbounded dual solutions; theoretical and numerical difficulties, in particular for primal-dual interior-point methods.
- solution:
 - theoretical facial reduction (Borwein, W.'81)
 - preprocess for regularized smaller problem (Cheung, Schurr, W.'11)
 - take advantage of degeneracy (for SNL Krislock, W.'10; for side chain positioning Burkowski, Cheung, W. '13)

Outline: Regularization/Facial Reduction

- Motivation/Introduction
- Preprocessing/Regularization
 - Abstract convex program
 - LP case
 - CP case
 - Cone optimization/SDP case
- Applications: QAP, GP, SNL, Molecular conformation ...
 - Side Chain Positioning
 - Implementation
 - Numerics

Background/Abstract convex program

(ACP)
$$\inf_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } g(\mathbf{x}) \leq_{\mathcal{K}} 0, \mathbf{x} \in \Omega$$

where:

- $f: \mathbb{R}^n \to \mathbb{R}$ convex; $g: \mathbb{R}^n \to \mathbb{R}^m$ is K-convex
 - $K \subset \mathbb{R}^m$ closed convex cone; $\Omega \subset \mathbb{R}^n$ convex set
 - $a \prec_{\kappa} b \iff b a \in K$
 - $g(\alpha x + (1 \alpha y)) \leq_{\kappa} \alpha g(x) + (1 \alpha)g(y)$, $\forall x, y \in \mathbb{R}^n, \forall \alpha \in [0, 1]$

Slater's CQ: $\exists \hat{x} \in \Omega$ s.t. $g(\hat{x}) \in -\inf K$ $(g(x) \prec_K 0)$

- guarantees strong duality
- essential for efficiency/stability in primal-dual interior-point methods

((near) loss of strict feasibility correlates with number of iterations and loss of accuracy)

Case of Linear Programming, LP

Primal-Dual Pair: $A, m \times n / P = \{1, ..., n\}$ constr. matrix/set

Slater's CQ for (LP-P) / Theorem of alternative

$$\exists \hat{\mathbf{y}} \text{ s.t. } \mathbf{c} - \mathbf{A}^{\top} \hat{\mathbf{y}} > 0, \qquad \left(\left(\mathbf{c} - \mathbf{A}^{\top} \hat{\mathbf{y}} \right)_{i} > 0, \forall i \in \mathcal{P} =: \mathcal{P}^{<} \right)$$

$$\mathbf{iff}$$

$$\mathbf{A}\mathbf{d} = 0, \ \mathbf{c}^{\top} \mathbf{d} = 0, \ \mathbf{d} \geq 0 \implies \mathbf{d} = 0 \qquad (*)$$

implicit equality constraints: $i \in \mathcal{P}^{=} := \mathcal{P} \setminus \mathcal{P}^{<}$

Finding solution $0 \neq d^*$ to (*) with max number of non-zeros determines (where \mathcal{F}^y is feasible set)

$$d_i^* > 0 \implies (c - A^\top y)_i = 0, \forall y \in \mathcal{F}^y \quad (i \in \mathcal{P}^=)$$

Rewrite implicit-equalities to equalities/ Regularize LP

Facial Reduction: $A^{\top}y \leq_f c$; minimal face $f \leq \mathbb{R}^n_+$

Mangasarian-Fromovitz CQ (MFCQ) holds

(after deleting redundant equality constraints!)

$$\left(\begin{array}{cc} \frac{\underline{i} \in \mathcal{P}^{<}}{\exists \hat{y} : & (A^{<})^{\top} \hat{y} < c^{<} & (A^{=})^{\top} \hat{y} = c^{=} \end{array} \right)$$
 $(A^{=})^{\top}$ is onto

MFCQ holds iff dual optimal set is compact

Numerical difficulties if MFCQ fails; in particular for interior point methods! Modelling issue? (minimal representation)

Facial Reduction/Preprocessing

Linear Programming Example, $x \in \mathbb{R}^2$

max
$$(2 \ 6) y$$

s.t.
$$\begin{bmatrix} -1 & -1 \\ 1 & 1 \\ 1 & -1 \\ -2 & 2 \end{bmatrix} y \le \begin{pmatrix} 1 \\ 2 \\ 1 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix}1\\0\end{pmatrix}\text{ feasible; weighted last two rows}\begin{bmatrix}1&-1&1\\-2&2&-2\end{bmatrix}\text{ sum to}$$
 zero.
$$\mathcal{P}^<=\{1,2\}, \mathcal{P}^==\{3,4\}$$

Facial reduction; substit. for y; get 1 dim vrble; 2 dim slack

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} t \leq \begin{pmatrix} 1 \\ \frac{3}{2} \end{pmatrix}, t^* = -1, val^* = -6.$$

Case of ordinary convex programming, CP

(CP)
$$\sup_{y} b^{\top} y \text{ s.t. } g(y) \leq 0,$$

where

- ullet $b\in\mathbb{R}^m;\,g(y)=(g_i(y))\in\mathbb{R}^n,\,g_i:\mathbb{R}^m o\mathbb{R}$ convex, $\forall i\in\mathbb{P}$
- Slater's CQ: $\exists \hat{y}$ s.t. $g_i(\hat{y}) < 0, \forall i$ (implies MFCQ)
- Slater's CQ fails <u>implies</u> implicit equality constraints exist, i.e.:

$$\mathcal{P}^{=} := \{i \in \mathcal{P} : g(y) \leq 0 \implies g_i(y) = 0\} \neq \emptyset$$

Let $\mathcal{P}^{<} := \mathcal{P} \backslash \mathcal{P}^{=}$ and

$$g^{<} := (g_i)_{i \in \mathcal{P}^{<}}, g^{=} := (g_i)_{i \in \mathcal{P}^{=}}$$

Rewrite implicit equalities to equalities/ Regularize CP

(CP) is equivalent to $g(y) \le_f 0$, f is minimal face

$$\begin{array}{ccc} & \text{sup} & b^\top y \\ \text{(CP}_{\text{reg}}) & \text{s.t.} & g^<(y) \leq 0 \\ & y \in \mathcal{F}^= & \text{or } (g^=(y) = 0) \end{array}$$

where $\mathcal{F}^{=} := \{ y : g^{=}(y) = 0 \}$. Then

$$\mathcal{F}^{=} = \{ y : g^{=}(y) \leq 0 \},$$
 so is a convex set!

Slater's CQ holds for (CP_{rea})

$$\exists \hat{y} \in \mathcal{F}^{=} : g^{<}(\hat{y}) < 0$$

modelling issue again?

Faithfully convex function f (Rockafellar'70)

f affine on a line segment only if affine on complete line containing the segment (e.g. analytic convex functions)

$$\mathcal{F}^{=} = \{ y : g^{=}(y) = 0 \}$$
 is an affine set

Then:

$$\mathcal{F}^{=} = \{ y : Vy = V\hat{y} \}$$
 for some \hat{y} and full-row-rank matrix V .

Then MFCQ holds for

Semidefinite Programming, SDP

$$\begin{split} & \mathcal{K} = \mathcal{S}_{+}^{n} = \mathcal{K}^{*} \text{ nonpolyhedral cone!} \\ & \text{where } \mathcal{K}^{*} := \{\phi : \langle \phi, x \rangle \geq 0, \forall x \in \mathcal{K}\} \text{ dual/polar cone} \\ & (\text{SDP-P}) \quad \textit{V}_{P} = \sup_{y \in \mathbb{R}^{m}} \textit{b}^{\top} \textit{y} \text{ s.t. } \textit{g}(\textit{y}) := \mathcal{A}^{*} \textit{y} - \textit{c} \preceq_{\mathcal{S}_{+}^{n}} 0 \\ & (\text{SDP-D}) \quad \textit{V}_{D} = \inf_{x \in \mathcal{S}_{+}^{n}} \langle \textit{c}, x \rangle \text{ s.t. } \mathcal{A} \textit{x} = \textit{b}, \; \textit{x} \succeq_{\mathcal{S}_{+}^{n}} 0 \end{split}$$

where:

- PSD cone $S_+^n \subset S^n$ symm. matrices
- $c \in S^n$, $b \in \mathbb{R}^m$
- $\mathcal{A}: \mathcal{S}^n \to \mathbb{R}^m$ is a linear map, with adjoint \mathcal{A}^* $\mathcal{A}x = (\operatorname{trace} A_i x) \in \mathbb{R}^m$ $\mathcal{A}^* y = \sum_{i=1}^m A_i y_i \in \mathcal{S}^n$

Slater's CQ/Theorem of Alternative

(Assume feasibility:
$$\exists \, \tilde{y} \text{ s.t. } c - \mathcal{A}^* \tilde{y} \succeq 0.$$
)
$$\exists \, \hat{y} \text{ s.t. } s = c - \mathcal{A}^* \hat{y} \succ 0 \qquad \text{(Slater)}$$

$$\underline{\text{iff}}$$

$$\mathcal{A}d = 0, \ \langle c, d \rangle = 0, \ d \succeq 0 \implies d = 0 \qquad (*)$$

Faces of Cones - Useful for Charact. of Opt.

Face

A convex cone F is a face of K, denoted $F \subseteq K$, if $x, y \in K$ and $x + y \in F \implies x, y \in F$ ($F \subseteq K$ proper face)

Conjugate Face

If $F \subseteq K$, the conjugate face (or complementary face) of F is $F^c := F^{\perp} \cap K^* \subseteq K^*$ If $x \in ri(F)$, then $F^c = \{x\}^{\perp} \cap K^*$.

Minimal Faces

 $f_P := \operatorname{face} \mathcal{F}_P^s \subseteq K$, \mathcal{F}_P^s is primal feasible set $f_D := \operatorname{face} \mathcal{F}_D^s \subseteq K^*$, \mathcal{F}_D^s is dual feasible set where: K^* denotes the dual (nonnegative polar) cone; face S denotes the smallest face containing S.

Regularization Using Minimal Face

Borwein-W.'81, $f_P = \text{face } \mathcal{F}_P^s$

(SDP-P) is equivalent to the regularized

(SDP_{reg}-P)
$$V_{RP} := \sup_{y} \{\langle b, y \rangle : A^*y \leq_{f_P} c\}$$

(slacks: $\mathbf{s} = \mathbf{c} - \mathcal{A}^* \mathbf{y} \in \mathbf{f}_p$)

Lagrangian Dual DRP Satisfies Strong Duality:

(SDP_{reg}-D)
$$V_{DRP} := \inf_{X} \{ \langle c, x \rangle : A x = b, x \succeq_{f_{P}^{*}} 0 \}$$

= $V_{P} = V_{RP}$

and *v_{DRP}* is <u>attained</u>.

Conclusion Part I

- Minimal representations of the data regularize (P);
- Using the minimal face f_p regularizes SDPs.

Part II: Applications of SDP where Slater's CQ fails

Instances of SDP relaxations of NP-hard combinatorial optimization problems with fixed row and column sum and 0, 1 constraints

- Quadratic Assignment (Zhao-Karish-Rendl-W.'96)
- Graph partitioning (W.-Zhao'99)

Low rank problems

- Sensor network localization (SNL) problem (Krislock-W.'10, Krislock-Rendl-W.'10) (SNL, highly (implicit) degenerate/low rank solutions)
- Molecular conformation (Burkowski-Cheung-W.'11)

Side Chain Positioning

- For our purposes, a protein macromolecule is a chain of amino acids, also called residues.
- For more tractable prediction, assume atoms in the backbone are fixed; then look for conformation of side chains for each residue.
- A further approximation inolves a discretization of possible side chain conformations that rely on rotamericity.
- Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, E)$ be a weighted, undirected graph with node set $\mathcal{V} = \bigcup_{i=1}^{p} \mathcal{V}_{i}$, where each subset \mathcal{V}_{i} is a set consisting of *rotamers* for the *i*-th amino acid side chain/residue
- p is the number of residues; edge set \mathcal{E} has weight (energy) E_{uv} associated with edge $uv \cong (u, v) \in \mathcal{E}$.

Integer Quadratic Program, (IQP)

(IQP)
$$\begin{aligned} val_{IQP} = & \min & & \sum_{(u,v) \in \mathcal{E}_n} E_{uv} x_u x_v \\ & \text{s.t.} & & \sum_{u \in \mathcal{V}_k} x_u = 1, & \forall k = 1, \dots, p \\ & x_u \in \{0,1\}, \forall u \in \mathcal{V}, \end{aligned}$$

where
$$x_u = \begin{cases} 1 & \text{if rotamer } u \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

Rewrite IQP as

(IQP)
$$\begin{aligned} val_{IQP} &= & \min \quad x^T E x \\ &\text{s.t.} \quad Ax - \bar{e}_p = 0 \in \mathbb{R}^p \\ & x = \begin{bmatrix} v_1^T & v_2^T & \cdots & v_p^T \end{bmatrix}^T \in \{0, 1\}^{n_0} \\ & v_k \in \{0, 1\}^{m_k}, k = 1, \dots, p. \end{aligned}$$

Quadratic, Quadratic Program, (QQP)

Redundant constraints within {}

$$\begin{aligned} val_{IQP} &= val_{QQP} = & \min_{x} & x^{T}Ex \\ &\text{s.t.} & \|\bar{\mathbf{e}}_{p} - Ax\|^{2} = 0 \\ & x \circ x - x = 0 \\ & \left\{ \begin{array}{l} (A^{T}A - I) \circ (xx^{T}) = 0 \\ (xx^{T})_{ij} \geq 0, \ \forall \ (i,j) \in \mathcal{I}, \end{array} \right\} \end{aligned}$$

Recipe for SDP relaxation

- form the Lagrangian relaxation;
- apply homogenization;
- simplify to obtain the dual and an equivalent SDP;
- take the dual to obtain the SDP relaxation of the original IQP and remove any redundant (linearly dependent) constraints.

SCQ fails for SDP relaxation

Facially Reduced Primal-Dual Pair

$$\min_{\substack{X \in \mathcal{S}^{n-p} \\ \text{s.t.}}} \left\langle \hat{E}, X \right\rangle$$

$$\text{s.t.} \quad \operatorname{arrow}(X) = 0,$$

$$\stackrel{d}{\text{bdiag}}(X) = 0,$$

$$X_{00} = 1,$$

$$X \succeq 0,$$

$$\max_{\substack{t, w, \Lambda \\ \text{s.t.}}} t$$

$$\text{s.t.} \quad {}^{1}\mathcal{O}(t) + \operatorname{Arrow}(w) + {}^{\text{d}}\operatorname{BDiag}(\Lambda) \preceq \hat{E}.$$

Rounding to integral solution

Nearest feasible solution of IQP to $c \in \mathbb{R}^{n_0}$

$$\min_{x} \|x - c\| \text{ s.t. } Ax = \bar{e}, \ x \in \{0, 1\}^{n_0}$$
 (1)

Obtaining IQP solution from SDP solution

Perron-Frobenis rounding

Let $u \in \mathbb{R}^n$ the principal eigvec. of Y^* , and $u' := \frac{p}{u_2 + ... + u_n} \begin{pmatrix} \vdots \\ \vdots \\ u_n \end{pmatrix}$.

- $\implies u'$ satisfies $Au' = \overline{e}$, and empirically $u' \in [0, 1]^{n_0}$.
- \implies Take c = u' and solve (1) for \bar{u}' .
- Projection rounding

Let $\binom{1}{n''}$ be the diagonal of Y^* .

- $\implies u''$ satisfies $Au'' = \bar{e}, u'' \in [0,1]^{n_0}$.
- \implies Take c = u'' and solve (1) for \bar{u}'' .

Adding nonnegativity constraints

- $Y_{ij} \ge 0$ is a valid constraint, $\forall (i, j)$, and tightens the SDP relaxation.
- But it is too expensive to enforce the constraint Y ≥ 0 in the SDP relaxation.
- Use the cutting plane method:

repeat:

- (1) solve SDP;
- (2) add cutting planes (constraints $Y_{ij} \ge 0$).

How to choose cutting planes

- Cutting planes are not needed on diagonal blocks (which are diagonal).
- Some E_{ij} are very large $\implies Y_{ij}$ is likely to be negative.
- Rule: in each iter., choose (i, j) such that
 - (1) $Y_{ij} < 0$,
 - (2) $E_{ii}Y_{ii} << 0$ (i.e., $E_{ii} >> 0$).

Measuring the quality of rounded solutions

Metrics of IQP solution quality

Let x be a feasible solution of IQP. Then

$$x^T E x \ge val_{IQP} \ge d^*$$
.

- The fraction $\frac{x^T Ex val_{IOP}}{val_{IOP}}$ gives a measure of the quality of x.
- But val_{IOP} is not known.
- Use the relative difference instead:

$$\frac{x^T E x - d^*}{\frac{1}{2} |x^T E x + d^*|} \ge \frac{x^T E x - val_{IQP}}{\frac{1}{2} |x^T E x + val_{IQP}|}.$$

Computation results

Table: Results on medium-sized proteins

Protein	n_0	р	run time (min)		relative diff		relative gap	
			SCPCP	orig	SCPCP	orig	SCPCP	orig
1B9O	265	112	0.64	254.85	1.19E-11	2.14	1.45E-09	1.24
1C5E	200	71	2.59	70.63	4.93E-11	2.01	5.02E-09	1.00
1C9O	207	53	2.15	66.50	3.35E-12	2.00	2.77E-10	1.02
1CZP	237	83	1.90	143.95	8.30E-11	2.24	1.03E-08	1.00
1MFM	216	118	0.19	102.11	2.01E-11	2.00	1.24E-09	1.09
1QQ4	365	143	5.70	-	6.49E-11	-	2.27E-08	-
1QTN	302	134	5.04	-	2.24E-11	-	4.12E-09	-
1QU9	287	101	7.55	-	1.80E-11	-	5.52E-09	-

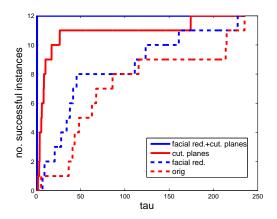
Computation results

Table: Results on large proteins (SCPCP only)

Protein	n_0	р	run time (hr)	rel. diff	rel. gap	numcut	# iter	Final # cuts
1CEX	435	146	0.08	1.26E-11	5.57E-09	40	9	485
1CZ9	615	111	3.96	2.98E-13	6.37E-10	60	25	1997
1QJ4	545	221	0.15	5.31E-12	1.14E-09	60	14	1027
1RCF	581	142	0.85	3.71E-12	1.15E-08	60	17	1305
2PTH	930	151	29.65	8.69E-09	7.63E-06	120	34	7247
5P21	464	144	0.31	1.39E-12	7.33E-10	40	16	822

Run times when using only facial red. or cutting planes

Figure: Performance profile for the use of facial reduction and cutting planes



Conclusion Part II

- SCQ fails for many SDP relaxations of hard combinatorial problems.
- facial reduction reduces size of problem and improves efficient/stability in particular when the structure is known.

Side Chain Positioning Implementation Numerics

Thanks for your attention!

Taking advantage of Degeneracy and Special Structure in Linear Cone Optimization

Yuen-Lam Cheung and Henry Wolkowicz

Dept. Combinatorics and Optimization, University of Waterloo

at: CanaDAM 2013, June 10-13, Memorial University of Newfoundland