Three-colourability of planar graphs without 5-cycles and triangular 3- and 6-cycles

Asiyeh Sanaei

Brock University

Joint work with Babak Farzad

June 12, 2013
Figure: A colouring of vertices of a graph.
Proper graph colouring: Assignments of colours to the vertices of a graph such that no two adjacent vertices are coloured the same.
Proper graph colouring: Assignments of colours to the vertices of a graph such that no two adjacent vertices are coloured the same.

Chromatic number: The smallest number of colours needed to properly colour the vertices of a graph G; $\chi(G)$.

Example:

Figure: $\chi(P) = 3$.
Proper graph colouring: Assignments of colours to the vertices of a graph such that no two adjacent vertices are coloured the same.

Chromatic number: The smallest number of colours needed to properly colour the vertices of a graph G; $\chi(G)$.

Example:

![Graph diagram with vertices coloured]

Figure: $\chi(P) = 3$.
History:

1. **Four-colour theorem**: [Appel-Haken; 1977] If G is planar, then $\chi(G) \leq 4$; every plane map is 4-colorable.
History:

1. **Four-colour theorem**: [Appel-Haken; 1977] If G is planar, then $\chi(G) \leq 4$; every plane map is 4-colorable.

2. **Three-colour theorem**: [Grötzsch; 1959] If G is planar and triangular free, then $\chi(G) \leq 3$.
Three-colourability of planar graphs:

1. Steinberg conjecture: [1976] Every $\{4, 5\}$-cycle-free planar graph is 3-colourable.
Three-colourability of planar graphs:

1. **Steinberg conjecture:** [1976] Every \(\{4, 5\}\)-cycle-free planar graph is 3-colourable.

2. **Relaxation of Steinberg conjecture:** [Erdős; 1990] Find the smallest \(C\) such that a \(\{4, \ldots, C\}\)-cycle-free planar graph is 3-colourable.
1. [Abott-Zhou; 1991] Every $\{4, \ldots, 11\}$-cycle-free planar graph is 3-colourable.
1. [Abott-Zhou; 1991] Every $\{4, \ldots, 11\}$-cycle-free planar graph is 3-colourable.

2. [Borodin; 1996] \Rightarrow $\{4, \ldots, 10\}$-cycle-free planar graphs.
1. [Abott-Zhou; 1991] Every \(\{4, \ldots, 11\}\)-cycle-free planar graph is 3-colourable.

2. [Borodin; 1996] \(\Rightarrow\) \(\{4, \ldots, 10\}\)-cycle-free planar graphs.

3. [Borodin; 1996 (also, Sanders-Zhou; 1995)]

\(\Rightarrow\) \(\{4, \ldots, 9\}\)-cycle-free planar graphs.
1. [Abott-Zhou; 1991] Every $\{4, \ldots, 11\}$-cycle-free planar graph is 3-colourable.

2. [Borodin; 1996] $\Rightarrow \{4, \ldots, 10\}$-cycle-free planar graphs.

3. [Borodin; 1996 (also, Sanders-Zhou; 1995)]
 $\Rightarrow \{4, \ldots, 9\}$-cycle-free planar graphs.

4. [Borodin et al.; 2005] $\Rightarrow \{4, \ldots, 7\}$-cycle-free planar graphs.
More results:

1. [Borodin et al.; 2009] Planar graphs without \{5, 7\}-cycles and adjacent triangles are 3-colorable.
More results:

1. [Borodin et al.; 2009] Planar graphs without \{5, 7\}-cycles and adjacent triangles are 3-colorable.

2. [Borodin et al.; 2010] Planar graphs without triangles adjacent to cycles of length from 4 to 7 are 3-colorable.
Claim: Graphs without the following configurations are 3-colourable:

\[F_1 \quad F_2 \quad F_3 \]

.... Proof follows ...
Claim: Graphs without the following configurations are 3-colourable:

\[F_1 \quad F_2 \quad F_3 \]

.... Proof follows ...
Stretched edge: An edge that is not on a \(\{4,6\}\)-cycle.
Stretched edge: An edge that is not on a \(\{4, 6\} \)-cycle.

A \(d \)-claw:

![Diagram of a \(d \)-claw]

Figure: A colouring of 10-cycle that cannot be extended to \(d \)-claw.
Stretched edge: An edge that is not on a \(\{4, 6\}\)-cycle.

A \(d\)-claw:

![Diagram of a 10-cycle with a highlighted edge]

Figure: A colouring of 10-cycle that cannot be extended to \(d\)-claw.
Bad cycles:

1. 6-cycle: it’s internal face is partitioned into 4-cycles.

![Diagram of a 6-cycle](image)

Figure: Bad 6-cycle.
Bad cycles:

1. 6-cycle: it’s internal face is partitioned into 4-cycles.

![Figure: Bad 6-cycle.](image)

2. 9-cycle \Rightarrow one 7-cycle and one or more 4-cycles.
Bad cycles:

1. 6-cycle: it’s internal face is partitioned into 4-cycles.

2. 9-cycle \Rightarrow one 7-cycle and one or more 4-cycles.

3. 10-cycle \Rightarrow Either a d-claw or one 8-cycle and one or more 4-cycles.

Figure: Bad 6-cycle.
Main theorem: Any 3-colouring of the boundary of the exterior face D, which is a good cycle, of any planar graph without $F_1, F_2,$ and F_3 can be extended to a 3-colouring of the graph.

![Diagram](image.png)

Figure: The outer boundary of the external face of G.

Good cycle: Not bad and either $|C| \in \{3, 4, 6, 7\}$ or $|C| \in \{8, 9, 10\}$ and C is stretched.
Main theorem: Any 3-colouring of the boundary of the exterior face D, which is a good cycle, of any planar graph without $F_1, F_2,$ and F_3 can be extended to a 3-colouring of the graph.

Figure: The outer boundary of the external face of G.

Good cycle: Not bad and either $|C| \in \{3, 4, 6, 7\}$ or $|C| \in \{8, 9, 10\}$ and C is stretched.
Main theorem: Any 3-colouring of the boundary of the exterior face \(D \), which is a good cycle, of any planar graph without \(F_1, F_2, \) and \(F_3 \) can be extended to a 3-colouring of the graph.

Figure: The outer boundary of the external face of \(G \).

Good cycle: Not bad and either \(|C| \in \{3, 4, 6, 7\}\) or \(|C| \in \{8, 9, 10\}\) and \(C \) is stretched.
Proof: (By contradiction)

1. G: counterexample with the fewest vertices,
2. ϕ: a colouring of D that cannot be extended to G.
Proof: (By contradiction)

1. G: counterexample with the fewest vertices,

2. ϕ: a colouring of D that cannot be extended to G.

Properties of the minimum counterexample:

(1) If $v \in \text{Int}(D)$, then D does not become bad in $G – v$.
Proof: (By contradiction)

1. G: counterexample with the fewest vertices,

2. ϕ: a colouring of D that cannot be extended to G.

Properties of the minimum counterexample:

(1) If $\nu \in Int(D)$, then D does not become bad in $G - \nu$.

(2) If $\nu \in Int(D)$, then $d(\nu) \geq 3$.
Proof: (By contradiction)

1. G: counterexample with the fewest vertices,

2. ϕ: a colouring of D that cannot be extended to G.

Properties of the minimum counterexample:

(1) If $v \in \text{Int}(D)$, then D does not become bad in $G - v$.

(2) If $v \in \text{Int}(D)$, then $d(v) \geq 3$.

(3) G is 2-connected.
Proof: (By contradiction)

1. \(G \): counterexample with the fewest vertices,

2. \(\phi \): a colouring of \(D \) that cannot be extended to \(G \).

Properties of the minimum counterexample:

(1) If \(v \in \text{Int}(D) \), then \(D \) does not become bad in \(G - v \).

(2) If \(v \in \text{Int}(D) \), then \(d(v) \geq 3 \).

(3) \(G \) is 2-connected.

(4) \(G \) has no separating good cycle; \(\text{Int}(C) \neq \emptyset \) and \(\text{Out}(C) \neq \emptyset \).

\(S_i \): separating cycle of length \(i \).
(5) If a good cycle C in G has an internal chord e, then $|C| \in \{8, 9, 10\}$ and e is triangular.

(6) D has no chords.
(5) If a good cycle C in G has an internal chord e, then $|C| \in \{8, 9, 10\}$ and e is triangular.

(6) D has no chords.

(7) If C is good, then there is no 2-path xyz joining two non-consecutive vertices of C through $y \in \text{Int}(C)$.

Figure: No 2-path joining non-consecutive vertices of a good cycle C.
Sketch of proof: (By contradiction) Assume that C is split by such a 2-path into cycles C' and C''; $4 \leq |C'| \leq |C''| \leq 10$.

(i) $|C'| \leq 7$,

(ii) If C is stretched then $|C| \geq 8$ and e_0 lies on C''.

Case $|C'| = 4$:

1. $|C''| = 4$: Will have an S_4 (Contradiction).
Sketch of proof: (By contradiction) Assume that C is split by such a 2-path into cycles C' and C''; $4 \leq |C'| \leq |C''| \leq 10$.

(i) $|C'| \leq 7$,

(ii) If C is stretched then $|C| \geq 8$ and e_0 lies on C''.
Sketch of proof: (By contradiction) Assume that C is split by such a 2-path into cycles C' and C''; $4 \leq |C'| \leq |C''| \leq 10$.

(i) $|C'| \leq 7$,

(ii) If C is stretched then $|C| \geq 8$ and e_0 lies on C''.

Case $|C'| = 4$:

1. $|C''| = 4$: Will have an S_4 (Contradiction).

Figure: $|C'| = |C''| = 4$.
Sketch of proof: (By contradiction) Assume that C is split by such a 2-path into cycles C' and C''; $4 \leq |C'| \leq |C''| \leq 10$.

(i) $|C'| \leq 7$,

(ii) If C is stretched then $|C| \geq 8$ and e_0 lies on C''.

Case $|C'| = 4$:

1. $|C''| = 4$: Will have an S_4 (Contradiction).

Figure: $|C'| = |C''| = 4$.
Sketch of proof: (By contradiction) Assume that C is split by such a 2-path into cycles C' and C''; $4 \leq |C'| \leq |C''| \leq 10$.

(i) $|C'| \leq 7$,

(ii) If C is stretched then $|C| \geq 8$ and e_0 lies on C''.

Case $|C'| = 4$:

1. $|C''| = 4$: Will have an S_4 (Contradiction).

Figure: $|C'| = |C''| = 4$.
Proof: ... Continued...

2. $|C''| = 9$:

(a) $|C| = 9$ and C is stretched $\Rightarrow e_0$ is on C''

$\Rightarrow C''$ cannot have a chord (forming F_i or C is bad)

$\Rightarrow C''$ is an S_9 (bad) with bad partition P

$\Rightarrow P \cup \{f\}$: a bad partition of C (Contradiction)

Figure: $|C'| = 4, |C''| = 9.$
2. \(|C''| = 9:\)

(a) \(|C| = 9\) and \(C\) is stretched \(\Rightarrow e_0\) is on \(C''\)

\(\Rightarrow C''\) cannot have a chord (forming \(F_i\) or \(C\) is bad)

\(\Rightarrow C''\) is an \(S_9\) (bad) with bad partition \(P\)

\(\Rightarrow P \cup \{f\}\): a bad partition of \(C\) (Contradiction)

\[\text{Figure: } |C'| = 4, |C'''| = 9.\]
Proof: ... Continued...

2. $|C''| = 9$:

(a) $|C| = 9$ and C is stretched \Rightarrow e_0 is on C''

\Rightarrow C'' cannot have a chord (forming F_i or C is bad)

\Rightarrow C'' is an S_9 (bad) with bad partition P

\Rightarrow $P \cup \{f\}$: a bad partition of C (Contradiction)

Figure: $|C'| = 4, |C'''| = 9$.

\[\text{Figure : } |C'| = 4, |C'''| = 9.\]
Proof: ... Continued...

2. $|C''| = 9$:

(a) $|C| = 9$ and C is stretched $\Rightarrow e_0$ is on C''

$\Rightarrow C''$ cannot have a chord (forming F_i or C is bad)

$\Rightarrow C''$ is an S_9 (bad) with bad partition P

$\Rightarrow P \cup \{f\}$: a bad partition of C (Contradiction)

Figure: $|C'| = 4, |C''| = 9$.
Proof: ... Continued...

2. \(|C''| = 9:\)

\((a)\) \(|C| = 9\) and \(C\) is stretched \(\Rightarrow\) \(e_0\) is on \(C''\)

\(\Rightarrow\) \(C''\) cannot have a chord (forming \(F_i\) or \(C\) is bad)

\(\Rightarrow\) \(C''\) is an \(S_9\) (bad) with bad partition \(P\)

\(\Rightarrow\) \(P \cup \{f\}\): a bad partition of \(C\) (Contradiction)

\[\text{Figure : } |C'| = 4, |C'''| = 9.\]
Proof: ... Continued...

2. $|C''| = 9$:

(a) $|C| = 9$ and C is stretched $\Rightarrow e_0$ is on C''

$\Rightarrow C''$ cannot have a chord (forming F_i or C is bad)

$\Rightarrow C''$ is an S_9 (bad) with bad partition P

$\Rightarrow P \cup \{f\}$: a bad partition of C (Contradiction)

Figure: $|C'| = 4, |C''| = 9$.
Proof: ... Continued...

3. $|C''| = 10$: \Rightarrow e_0 is on C'' \Rightarrow C'' cannot have a chord

\Rightarrow C'' is an S_{10} (bad with partition P or d-claw)

\Rightarrow If d-claw, then e_y is on a triangle adjacent to f; F_2

(Contradiction)

Figure: $|C'| = 4, |C''| = 10.$
Proof: ... Continued...

3. \(|C''| = 10: \implies e_0 \text{ is on } C'' \implies C'' \text{ cannot have a chord}

\implies C'' \text{ is an } S_{10} \text{ (bad with partition } P \text{ or } d\text{-claw)}

\implies \text{ If } d\text{-claw, then } e_y \text{ is on a triangle adjacent to } f; F_2

(Contradiction)

Figure : \(|C'| = 4, |C''| = 10."
Proof: ... Continued...

3. \(|C''| = 10: \Rightarrow e_0 \text{ is on } C'' \Rightarrow C'' \text{ cannot have a chord}

\Rightarrow C'' \text{ is an } S_{10} \text{ (bad with partition } P \text{ or } d\text{-claw)}

\Rightarrow \text{ If } d\text{-claw, then } e_y \text{ is on a triangle adjacent to } f; F_2

(Contradiction)

Figure: \(|C'| = 4, |C''| = 10\).
Excluding certain configurations: By transforming G into a smaller graph G', and in doing so we make sure not to:

(a) create loops, multiple edges or F_1, F_2, or F_3,

Next:

(i) The colouring of D cannot be extended to G' (contradiction),

(ii) The colouring of D can be extended to G (contradiction).
Excluding certain configurations: By transforming G into a smaller graph G', and in doing so we make sure not to:

(a) create loops, multiple edges or F_1, F_2, or F_3,

(b) identify two vertices of D with different colours,
Excluding certain configurations: By transforming G into a smaller graph G', and in doing so we make sure not to:

(a) create loops, multiple edges or $F_1, F_2,$ or $F_3,$

(b) identify two vertices of D with different colours,

(c) create edge between vertices of D with the same colour,
Excluding certain configurations: By transforming G into a smaller graph G', and in doing so we make sure not to:

(a) create loops, multiple edges or $F_1, F_2,$ or F_3,

(b) identify two vertices of D with different colours,

(c) create edge between vertices of D with the same colour,

(d) make D a bad cycle (including creating ≤ 6-cycle on e_0).
Excluding certain configurations: By transforming G into a smaller graph G', and in doing so we make sure not to:

(a) create loops, multiple edges or $F_1, F_2, \text{ or } F_3$,

(b) identify two vertices of D with different colours,

(c) create edge between vertices of D with the same colour,

(d) make D a bad cycle (including creating ≤ 6-cycle on e_0).

Next:

(i) The colouring of D cannot be extended to G' (contradiction),

(ii) The colouring of D can be extended to G (contradiction).
Properties of G ... Continued...

(8) G has no 4-cycle other than D.

Sketch of proof: (By contradiction) If $wxyz \neq D$ is a 4-cycle in G:

(i) G has no separating 4-cycle and $F_1 \Rightarrow wxyz$ is a face,

(ii) D has no chord \Rightarrow not all w, x, y, z are on D; let $y \in Int(D),$

(iii) identify w and y.

(9) G has no bad cycle unless possibly d-claws.

(10) G has no 6-cycle other than D.

Proof: Similar to (8).
Properties of G ... Continued...

(8) G has no 4-cycle other than D.

Sketch of proof: (By contradiction) If $wxyz \neq D$ is a 4-cycle in G:

(i) G has no separating 4-cycle and $F_1 \implies wxyz$ is a face,

(ii) D has no chord \implies not all w, x, y, z are on D; let $y \in \text{Int}(D)$,

(iii) identify w and y.

(9) G has no bad cycle unless possibly d-claws.
Properties of G ... Continued...

(8) G has no 4-cycle other than D.

Sketch of proof: (By contradiction) If $wxyz \neq D$ is a 4-cycle in G:

(i) G has no separating 4-cycle and $F_1 \Rightarrow wxyz$ is a face,

(ii) D has no chord \Rightarrow not all w, x, y, z are on D; let $y \in \text{Int}(D)$,

(iii) identify w and y.

(9) G has no bad cycle unless possibly d-claws.

(10) G has no 6-cycle other than D.

Proof: Similar to (8).
(10) G has no internal tetrad.

Proof:

\[\begin{array}{c}
 x \\
 v_1 \\
 v_2 \\
 v_3 \\
 v_4 \\
 y
\end{array} \]

Figure: No tetrad.
(10) G has no internal tetrad.

Proof:

\begin{figure}
\centering
\includegraphics{tetrad.png}
\caption{No tetrad.}
\end{figure}
(10) G has no internal tetrad.

Proof:

Figure: No tetrad.
(10) G has no internal tetrad.

Proof:

Figure: No tetrad.
(10) G has no internal tetrad.

Proof:

Figure: No tetrad.
No internal tetrad.... Continued

d(w)=4: the colouring can be extended.

Figure: No tetrad.
No internal tetrad.... Continued

d(w)=4: the colouring can be extended.

Figure : No tetrad.
No internal tetrad.... Continued

\[d(w) \geq 5: \]

\[f \]

Figure: No tetrad.
No internal tetrad.... Continued

\[d(w) \geq 5: \]

![Diagram](image)

Figure: No tetrad.
(11) G has at most one M-face and no MM-faces.

Proof:

Figure: (i) M-face and (ii) MM-face.

Obstacle: Making D a d-claw.
(11) G has at most one M-face and no MM-faces.

Proof:

![Diagram showing M-face and MM-face](image)

Figure: (i) M-face and (ii) MM-face.

Obstacle: Making D a d-claw.
(11) \(G \) has at most one M-face and no MM-faces.

Proof:

Obstacle: Making \(D \) a \(d \)-claw.
(11) G has at most one M-face and no MM-faces.

Proof:

Figure: (i) M-face and (ii) MM-face.

Obstacle: Making D a d-claw.
(11) G has at most one M-face and no MM-faces.

Proof:

Figure: (i) M-face and (ii) MM-face.

Obstacle: Making D a d-claw.
(12) G does not have the following configurations.

Figure: Bad 7-faces.
Proof (case (4)):

Figure: Bad 7-face (4).
Proof (case (4)):

\[
\begin{align*}
&v_5 a_4 v_6 v_7 a_5 v_1 a_2 v_3 a_3 v_4 (4) \\
\end{align*}
\]

Figure: Bad 7-face (4).
Theorem: The properties of G are incompatible.

Proof: Using discharging method.

Corollary: The planar graphs without F_1, F_2, and F_3 are 3-colourable.
Thank You!