Extremal Hypergraphs for Packing and Covering

Penny Haxell
University of Waterloo

Joint work with L. Narins and T. Szabó
Let \mathcal{H} be a hypergraph. A packing or matching of \mathcal{H} is a set of pairwise disjoint edges of \mathcal{H}.

The parameter $\nu(\mathcal{H})$ is defined to be the maximum size of a packing in \mathcal{H}.

\[\text{Packing} \]
Covering

A cover of the hypergraph \mathcal{H} is a set of vertices C of \mathcal{H} such that every edge of \mathcal{H} contains a vertex of C.

The parameter $\tau(\mathcal{H})$ is defined to be the minimum size of a cover of \mathcal{H}.
Comparing $\nu(\mathcal{H})$ and $\tau(\mathcal{H})$

For every hypergraph \mathcal{H} we have $\nu(\mathcal{H}) \leq \tau(\mathcal{H})$.

For every r-uniform hypergraph \mathcal{H} we have $\tau(\mathcal{H}) \leq r\nu(\mathcal{H})$.
The upper bound $\tau(\mathcal{H}) \leq r\nu(\mathcal{H})$ is attained for certain hypergraphs, for example for the complete r-uniform hypergraph \mathcal{K}_{rt+r-1}^r with $rt+r-1$ vertices, in which $\nu = t$ and $\tau = rt$.
Ryser’s Conjecture

Conjecture: Let \mathcal{H} be an r-partite r-uniform hypergraph. Then

$$\tau(\mathcal{H}) \leq (r - 1)\nu(\mathcal{H}).$$

This conjecture dates from the early 1970’s.
Results on Ryser’s Conjecture

- \(r = 2 \): This is König’s Theorem for bipartite graphs.

- \(r = 3 \): Known (proved by Aharoni, 2001)

- \(r = 4 \) and \(r = 5 \): Known for small values of \(\nu(\mathcal{H}) \), namely for \(\nu(\mathcal{H}) \leq 2 \) when \(r = 4 \) and for \(\nu(\mathcal{H}) = 1 \) when \(r = 5 \). (Tuza)

- Whenever \(r - 1 \) is a prime power: If true, the upper bound is best possible.
Here $\nu(\mathcal{H}) = 1$ and $\tau(\mathcal{H}) = r - 1$.
On Ryser’s Conjecture for $r = 3$

Theorem (Aharoni 2001): Let \mathcal{H} be a 3-partite 3-uniform hypergraph. Then

$$\tau(\mathcal{H}) \leq 2\nu(\mathcal{H}).$$

Proof: Uses topological connectedness of matching complexes of bipartite graphs.

Q: What is \mathcal{H} like if it is a 3-partite 3-uniform hypergraph with $\tau(\mathcal{H}) = 2\nu(\mathcal{H})$?
Extremal hypergraphs for Ryser’s Conjecture
Home base hypergraphs

[Diagram of hypergraphs with nodes and edges marked as 'F' and 'R']
Extremal hypergraphs for Ryser’s Conjecture

Theorem (PH, Narins, Szabó): Let \(\mathcal{H} \) be a 3-partite 3-uniform hypergraph with \(\tau(\mathcal{H}) = 2\nu(\mathcal{H}) \). Then \(\mathcal{H} \) is a home base hypergraph.
Some proof ingredients
The extremal result for Ryser’s conjecture for \(r = 3 \) initially follows Aharoni’s proof of the conjecture for \(r = 3 \), which uses Hall’s Theorem for hypergraphs together with König’s Theorem.

Hall’s Theorem: The bipartite graph \(G \) has a complete matching if and only if: For every subset \(S \subseteq A \), the neighbourhood \(\Gamma(S) \) is big enough.

Here big enough means \(|\Gamma(S)| \geq |S| \).
Hall’s Theorem for 3-uniform hypergraphs

Theorem (Aharoni, PH, 2000): The bipartite 3-uniform hypergraph H has a complete packing if: For every subset $S \subseteq A$, the neighbourhood $\Gamma(S)$ has a matching of size at least $2(|S| - 1) + 1$.

![Diagram of Hall's Theorem for 3-uniform hypergraphs](image)
Aharoni’s proof of Ryser for $r = 3$

Let H be a 3-partite 3-uniform hypergraph. Let $\tau = \tau(H)$. Then by König’s Theorem, for every subset S of A, the neighbourhood graph $\Gamma(S)$ has a matching of size at least $|S| - (|A| - \tau)$.

Then by a defect version of Hall’s Theorem for hypergraphs, we find that H has a packing of size $\lfloor \tau/2 \rfloor$.
Proof of Hall’s Theorem for hypergraphs

The proof has two main steps.

Step 1: The bipartite 3-uniform hypergraph H has a complete packing if: For every subset $S \subseteq A$, the topological connectedness of the matching complex of the neighbourhood graph $\Gamma(S)$ is at least $|S| - 2$.

Step 2: If the graph G has a matching of size at least $2(|S| - 1) + 1$ then the topological connectedness of the matching complex of G is at least $|S| - 2$.

The matching complex of G is the abstract simplicial complex with vertex set $E(G)$, whose simplices are the matchings in G.
Topological connectedness

One way to describe topological connectedness of an abstract simplicial complex Σ, as it is used here:

We say Σ is k-connected if for each $-1 \leq d \leq k$ and each triangulation T of the boundary of a $(d+1)$-simplex, and each function f that labels each point of T with a point of Σ such that the set of labels on each simplex of T forms a simplex of Σ, the triangulation T can be extended to a triangulation T' of the whole $(d+1)$-simplex, and f can be extended to a full labelling f' of T' with the same property.

Hall’s Theorem for hypergraphs uses this together with Sperner’s Lemma.

The topological connectedness of the matching complex of G is not a monotone parameter.
Extremal hypergraphs for Ryser’s Conjecture

Two main parts are needed in understanding the extremal hypergraphs for Ryser’s Conjecture for \(r = 3 \).

Part A: Show that any bipartite graph \(G \) that has a matching of size \(2k \) but whose matching complex has the smallest possible topological connectedness (namely \(k - 2 \)) has a very special structure.

Part B: Analyse how the edges of the neighbourhood graph \(G \) of \(A \) (which has this special structure) extend to \(A \).
Home base hypergraphs
Part B (one case)

There exists a subset X of C with $|Y| \leq |X|$, where $Y = \Gamma_G(X)$, such that for each $y \in Y$, if we erase the $(y, C \setminus X)$ edges of G, the topological connectedness of the matching complex goes up.
If for each $S \subset A$, the topological connectedness of the matching complex of $\Gamma(S)$ did not go down, then we find H has a packing larger than $\nu(H)$.

So for some S_y, erasing the $(y, C \setminus X)$ edges causes the connectedness to decrease.

Properties of S_y:

• $|S_y| \geq |A| - 1$, which implies $S_y = A \setminus \{a\}$ for some $a \in A$,

• every maximum matching in $\Gamma(S)$ uses an edge of $(y, C \setminus X)$.
Removing the vertices in Y and Z causes ν to decrease by $|Y|$ and τ to decrease by $2|Y|$. Then we may use induction.