Two Laplacians for the distance matrix of a graph

Mustapha Aouchiche* and Pierre Hansen

GERAD and HEC Montreal, Canada

CanaDAM 2013, Memorial University, June 10–13
1 Adjacency related matrices
2 Distance Matrix
3 Distance Laplacian matrix
4 Distance signless Laplacian matrix
1. Adjacency related matrices

Adjacency matrix

- For a graph \(G = (V, E) \) on \(n \) vertices, the **adjacency matrix** \(A = A(G) \) is the \(0 \times 1 \) \(n \times n \)-matrix indexed by the vertices of \(G \) and defined by \(a_{i,j} = 1 \) if and only if \(i \) \(\in E \)

- The **(adjacency) spectrum** \((\lambda_1, \lambda_2, \ldots, \lambda_n)\) of \(G \), with \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \), is the \(A \)'s spectrum

\[
A = \begin{bmatrix}
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0
\end{bmatrix}
\]

\(A \)-spectrum: \((3, 1, 0, 0, -2, -2)\)
1. Adjacency related matrices

Laplacian matrix

- The **Laplacian** of G is defined by $L = L(G) = \text{Deg} - A$, where Deg is the diagonal matrix whose diagonal entries are the degrees in G, and A the adjacency matrix of G.

- The **Laplacian spectrum** $(\mu_1, \mu_2, \ldots, \mu_n)$ of G, with $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n = 0$, is the L’s spectrum.

$$L = \begin{bmatrix}
3 & 0 & -1 & -1 & -1 & 0 \\
0 & 3 & 0 & -1 & -1 & -1 \\
-1 & 0 & 3 & 0 & -1 & -1 \\
-1 & -1 & 0 & 3 & 0 & -1 \\
-1 & -1 & -1 & 0 & 3 & 0 \\
0 & -1 & -1 & -1 & 0 & 3 \\
\end{bmatrix}$$

L–spectrum : $(5, 5, 3, 3, 2, 0)$
1. Adjacency related matrices

Signless Laplacian matrix

- The **signless Laplacian** of G is defined by $Q = Q(G) = \text{Deg} + A$
- The **Laplacian spectrum** (q_1, q_2, \ldots, q_n) of G, with $q_1 \geq q_2 \geq \cdots \geq q_n$, is the Q’s spectrum

$$Q = \begin{bmatrix}
3 & 0 & 1 & 1 & 1 & 0 \\
0 & 3 & 0 & 1 & 1 & 1 \\
1 & 0 & 3 & 0 & 1 & 1 \\
1 & 1 & 0 & 3 & 0 & 1 \\
1 & 1 & 1 & 0 & 3 & 0 \\
0 & 1 & 1 & 1 & 0 & 3 \\
\end{bmatrix}$$

Q–spectrum : $(6, 4, 3, 3, 1, 1)$
2. Distance matrix

Definition

- In a connected graph G the **distance** $d(i,j) = d_G(i,j)$ is the length of a shortest path between i and j.
- The **distance matrix** $D = D(G)$ of a connected graph G is the $n \times n$-matrix indexed by the vertices of G and where $D_{i,j} = d(i,j)$.
- The **distance spectrum** or D-spectrum is denoted by $(\partial_1, \partial_2, \ldots, \partial_n)$ with $\partial_1 \geq \partial_2 \geq \cdots \geq \partial_n$.

$$D = \begin{bmatrix}
0 & 2 & 1 & 1 & 1 & 2 \\
2 & 0 & 2 & 1 & 1 & 1 \\
1 & 2 & 0 & 2 & 1 & 1 \\
1 & 1 & 2 & 0 & 2 & 1 \\
1 & 1 & 1 & 2 & 0 & 2 \\
2 & 1 & 1 & 1 & 2 & 0 \\
\end{bmatrix}$$

D-spectrum : $(7, 0, 0, -2, -2, -3)$
3. Distance Laplacian

Definition

- **The transmission** of a vertex i is the sum of all the distances from i to all other vertices $t_i = \sum_{j \in V} d(i, j)$.

- The **distance Laplacian matrix** of G is defined by $\mathcal{D}^L = \text{Tr} - \mathcal{D}$, where Tr is the diagonal matrix whose diagonal entries are the transmissions in G.

- The **distance Laplacian spectrum** or \mathcal{D}^L–spectrum is denoted by $(\partial_1^L, \partial_2^L, \ldots, \partial_n^L)$ with $\partial_1^L \geq \partial_2^L \geq \cdots \geq \partial_n^L = 0$.

\[
\mathcal{D}^L = \begin{bmatrix}
7 & -2 & -1 & -1 & -1 & -2 \\
-2 & 7 & -2 & -1 & -1 & -1 \\
-1 & -2 & 7 & -2 & -1 & -1 \\
-1 & -1 & -2 & 7 & -2 & -1 \\
-1 & -1 & -1 & -2 & 7 & -2 \\
-2 & -1 & -1 & -1 & -2 & 7 \\
\end{bmatrix}
\]

\mathcal{D}^L–spectrum : $(10, 9, 9, 7, 7, 0)$
3. Distance Laplacian

Examples of distance Laplacian spectra

- The complete graph $K_n : \left(n^{(n-1)}, 0 \right)$ (also the Laplacian spectrum)
- The complement of an edge $K_n - e : \left(n + 2, n^{(n-2)}, 0 \right)$
- The star $S_n : \left(2n - 1^{(n-2)}, n, 0 \right)$
- The complete bipartite graph $K_{a,b} : \left(2n - a^{(b-1)}, 2n - b^{(a-1)}, n, 0 \right)$
- The complete split graph $SK_{n,\alpha} : \left(n + \alpha^{\alpha-1}, n^{n-\alpha}, 0 \right)$
Properties

- For any connected graph $\partial^L_n = 0$ (with multiplicity $m(0) = 1$)
- $m(\partial^L_1) \leq n - 1$, equality holds only for K_n
- Among trees $\partial^L_1 \geq 2n - 1$, equality holds only for S_n
- For L-spectra:

$$\mu_1(G) \geq \mu_1(G - e) \geq \mu_2(G) \geq \mu_2(G - e) \geq \cdots \geq \mu_n(G) = \mu_n(G - e) = 0$$

There is no similar result for D^L–spectra

- The D^L–spectra of P_6 and C_6 are $(21.3929, 15, 12.8532, 11, 9.7539, 0)$ and $(13, 13, 10, 9, 9, 0)$, respectively

- If e is an edge in G such that $G - e$ is connected, then $\partial^L_i(G - e) \geq \partial^L_i(G)$, for $i = 1, 2, \ldots, n$
- $\partial^L_i(G) \geq \partial^L_i(K_n) = n$, for $i = 1, 2, \ldots n - 1$
A connected graph G is k–transmission regular if $t_i = k$, for $i = 1, 2, \cdots, n$

If G is k–transmission regular with \mathcal{D}–spectrum $(\partial_1, \partial_2, \cdots, \partial_n)$, then $(k - \partial_n, \cdots k - \partial_1)$ is the \mathcal{D}^L–spectrum of G.

Moreover, the eigenspaces are the same.

A 7–transmission regular regular

\mathcal{D}–spectrum : $(7, 0, 0, -2, -2, -3)$

\mathcal{D}^L–spectrum : $(10, 9, 9, 7, 7, 0)$
3. Distance Laplacian

Graphs of diameter 2

Let G be a graph of diameter $D = 2$, $(\mu_1, \mu_2, \ldots, \mu_n = 0)$ its L-spectrum and $(\partial_1, \partial_2, \ldots, \partial_n = 0)$ its D^L-spectrum. Then $\partial_i = 2n - \mu_{n-i}$, for $i = 1, 2, \ldots, n-1$. Moreover, the L–eigenspaces and D–eigenspaces coincide.

A 7–transmission regular regular

L–spectrum : $(5, 5, 3, 3, 2, 0)$

D^L–spectrum : $(10, 9, 9, 7, 7, 0)$
3. Distance Laplacian

Similarities with the algebraic connectivity

For the Laplacian L [Fiedler, 1973] :
- $\mu_{n-1} = 0$ if and only if G is disconnected
- The multiplicity of 0 in the L-spectrum of G equals the number of connected components of G
- μ_{n-1} is called algebraic connectivity

For the distance Laplacian D^L :
- n is a D^L-eigenvalue of G if and only if the complement \overline{G} is disconnected
- The multiplicity of n in the D^L-spectrum of G is 1 less than the number of connected components of \overline{G}
3. Distance Laplacian

Similarities with the algebraic connectivity

Corollaries:
- \(\partial_1(G) \geq n \) with equality if and only if \(G \cong K_n \)
- If \(G \) is bipartite and \(n \) is a distance Laplacian eigenvalue of \(G \), then \(G \) is complete bipartite
- The star \(S_n \) is the only tree for which \(n \) is a distance Laplacian eigenvalue
- If the maximum degree \(\Delta = n - 1 \), then \(n \) is a \(D^L \)-eigenvalue with multiplicity at least \(n_\Delta \) (number of vertices of degree \(\Delta \))
4. Distance signless Laplacian

Definition

- The **transmission** of a vertex i is the sum of all the distances from i to all other vertices $t_i = \sum_{j \in V} d(i, j)$.
- The **distance Laplacian matrix** of G is defined by $D^Q = Tr + D$, where Tr is the diagonal matrix whose diagonal entries are the transmissions in G.
- The **distance Laplacian spectrum** or D^Q–spectrum is denoted by $(\partial^Q_1, \partial^Q_2, \ldots, \partial^Q_n)$ with $\partial^Q_1 \geq \partial^Q_2 \geq \cdots \geq \partial^Q_n$.

\[
D^Q = \begin{bmatrix}
7 & 2 & 1 & 1 & 1 & 2 \\
2 & 7 & 2 & 1 & 1 & 1 \\
1 & 2 & 7 & 2 & 1 & 1 \\
1 & 1 & 2 & 7 & 2 & 1 \\
1 & 1 & 1 & 2 & 7 & 2 \\
2 & 1 & 1 & 1 & 2 & 7 \\
\end{bmatrix}
\]

D^Q–spectrum: $(14, 7, 7, 5, 5, 4)$
Examples of distance signless Laplacian spectra

- For K_n : $\left(2n - 2, n - 2^{(n-1)}\right)$ (also the signless Laplacian spectrum)
- For $K_n - e$: $\left(\frac{3n - 2 \pm \sqrt{(n-2)^2 + 16}}{2}, n - 2^{(n-2)}\right)$
- For S_n : $\left(\frac{5n - 8 \pm \sqrt{9n^2 - 32n + 32}}{2}, 2n - 5^{(n-2)}\right)$
- For $K_{a,b}$: $\left(\frac{5n - 8 \pm \sqrt{9(a-b)^2 + 4ab}}{2}, 2n - a - 4^{(b-1)}, 2n - b - 4^{(a-1)}\right)$
4. Distance signless Laplacian

Properties

- For Q-spectra:

\[q_1(G) \geq q_1(G - e) \geq q_2(G) \geq q_2(G - e) \geq \cdots \geq q_n(G) \geq q_n(G - e) \]

There is no similar result for D^Q-spectra.

- The D^Q-spectra of P_6 and C_6 are

 \((25.0838, 12.1755, 11.1743, 8.6727, 7.7418, 5.5118)\) and \((18, 9, 9, 8, 5, 5)\), respectively.

- If e is an edge in G such that $G - e$ is connected, then

 \[\partial_i^Q(G - e) \geq \partial_i^Q(G), \text{ for } i = 1, 2, \ldots, n \]

- $\partial_1^Q(G) \geq \partial_1^Q(K_n) = 2n - 2$ with equality if and only if $G \cong K_n$

- $\partial_i^Q(G) \geq \partial_i^Q(K_n) = n - 2$, for $i = 2, 3, \ldots, n$

- $\partial_2^Q(G) \geq n - 2$ with equality if and only if $G \cong K_n$
4. Distance signless Laplacian

Transmission regular graphs

- $2 \text{Tr}_{\text{min}} \leq 2 \overline{\text{Tr}} \leq \partial_1^Q(G) \leq 2 \text{Tr}_{\text{max}}$ with equalities if and only if G is a transmission regular graph.

- If G is k–transmission regular with \mathcal{D}–spectrum $(\partial_1, \partial_2, \ldots, \partial_n)$, then $(k + \partial_1, k + \partial_2, \ldots, k + \partial_n)$ is the \mathcal{D}^Q–spectrum of G.

Moreover, the eigenspaces are the same.

A 7–transmission regular regular

\mathcal{D}–spectrum : $(7, 0, 0, -2, -2, -3)$

\mathcal{D}^L–spectrum : $(14, 7, 7, 5, 5, 4)$
Bipartite components

For the signless Laplacian:
- 0 is a Q-eigenvalue of G if and only if G contains a bipartite component or an isolated vertex.
- The multiplicity of 0 is equal to the number of bipartite components and isolated vertices.

For the distance signless Laplacian:
- If $n - 2$ is a D^Q-eigenvalue of G with multiplicity m, then \overline{G} contains at least m components, each of which is bipartite or an isolated vertex.
- There exist graphs with a bipartite complement for which $n - 2$ is not a D^Q-eigenvalue.
4. Distance signless Laplacian

Bipartite components

G (left) with $n = 5$, $\partial_5^Q \simeq 3.050286 > 3$ and \overline{G} (right) bipartite
The Petersen graph and its spectra

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>A-spectrum</th>
<th>L-spectrum</th>
<th>Q-spectrum</th>
<th>D-spectrum</th>
<th>D^L-spectrum</th>
<th>D^Q-spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$3^{(1)}$</td>
<td>$1^{(5)}$</td>
<td>$-2^{(4)}$</td>
<td>$5^{(4)}$</td>
<td>$2^{(5)}$</td>
<td>$0^{(1)}$</td>
</tr>
<tr>
<td></td>
<td>$2^{(1)}$</td>
<td>$4^{(5)}$</td>
<td>$1^{(4)}$</td>
<td>$0^{(1)}$</td>
<td>$15^{(1)}$</td>
<td>$0^{(4)}$</td>
</tr>
<tr>
<td></td>
<td>$15^{(1)}$</td>
<td>$0^{(4)}$</td>
<td>$-3^{(5)}$</td>
<td>$18^{(5)}$</td>
<td>$15^{(4)}$</td>
<td>$0^{(1)}$</td>
</tr>
<tr>
<td></td>
<td>$30^{(1)}$</td>
<td>$15^{(4)}$</td>
<td>$12^{(5)}$</td>
<td>$30^{(1)}$</td>
<td>$15^{(4)}$</td>
<td>$12^{(5)}$</td>
</tr>
</tbody>
</table>