A New Characterization of König-Egervary Graphs

Craig Larson

CanaDAM May 27, 2009 The König-Egervary Theorem: For a bipartite graph, the sum of the independence number α of the graph and its matching number μ equals its number of vertices n (i.e. $\alpha + \mu = n$).

$$lpha=2$$
, $\mu=1$, and $n=3$

A König-Egervary graph (or KE graph) is a graph where the sum of the independence number α of the graph and its matching number μ equals its number of vertices n (i.e. $\alpha + \mu = n$).

$$lpha=$$
 2, $\mu=$ 2, and $n=$ 4

ightharpoonup Start with a maximum matching M in a graph G.

- ▶ It can be assumed that the matching *M* is perfect.
- ▶ If not, extend G to a graph G'.

- ▶ It can be assumed that the matching *M* is perfect.
- ▶ If not, extend G to a graph G'.

- ▶ It can be assumed that the matching *M* is perfect.
- ▶ If not, extend G to a graph G'.

- ▶ It can be assumed that the matching *M* is perfect.
- ▶ If not, extend G to a graph G'.

- ▶ It can be assumed that the matching *M* is perfect.
- ▶ If not, extend G to a graph G'.

▶ G is KE iff its extension G' is KE.

► Find all blossoms and blossom tips with respect to the matching *M*.

► Find all blossoms and blossom tips with respect to the matching *M*.

► Find all blossoms and blossom tips with respect to the matching *M*.

▶ A blossom pair is a pair of blossoms whose blossom tips are joined by an *M*-alternating path beginning and ending with edges in *M*.

Theorem

A graph G with a perfect matching M is KE iff G contains no blossom pair.

$$\alpha = 1$$

$$\mu = 2$$

$$n = 4$$

A New Characterization of KE Graphs

► This is in terms of critical independent sets (Zhang, 1990).

The critical difference d is the maximum value of |I| - |N(I)|, for all independent sets I. An independent set I_c which realizes d is a critical independent set.

Let I_c =red vertices, then $N(I_c)$ =yellow vertices, and |I|-|N(I)|=0. d=0 and I_c is a critical independent set.

The critical difference d is the maximum value of |I| - |N(I)|, for all independent sets I. An independent set I_c which realizes d is a critical independent set.

Let $I_c = \text{red vertices}$, then $N(I_c) = \text{yellow vertices}$, and $|I_c| - |N(I_c)| = 0$.

d=0 and I_c is a critical independent set.

The Significance of Critical Independent Sets

Theorem

(Butenko & Trukhanov, 2007) Any critical independent set can be extended to a maximum independent set.

The Matching Lemma (I.)

Lemma

For any critical independent set I_c , there is a matching from $N(I_c)$ into I_c .

This follows from Hall's Theorem.

The critical independence number α' is the cardinality of a maximum independent set which realizes the critical difference d. If I_c is a maximum cardinality critical independent set then $\alpha' = |I_c|$.

Let I_c =red vertices,

 I_c is a maximum cardinality critical independent set.

So.
$$\alpha'=2$$
.

The critical independence number α' is the cardinality of a maximum independent set which realizes the critical difference d. If I_c is a maximum cardinality critical independent set then $\alpha' = |I_c|$.

Let I_c =red vertices,

 I_c is a maximum cardinality critical independent set.

So,
$$\alpha' = 2$$
.

A graph is totally independence reducible if $\alpha' = \alpha$.

Let I_c =red vertices, I_c is a maximum cardinality critical independent set and a maximum independent set.

So,
$$\alpha' = \alpha$$
.

For what graphs does $\alpha' = \alpha$?

▶ DeLaVina asked Graffiti.pc...

Graffiti.pc's Conjecture: $\alpha' = \alpha$ **iff** G **is a KE-graph.**

$$lpha=lpha'=2,$$
 $\mu=1,\ n=3,\ {
m and}$ $lpha+\mu=n$

Theorem: $\alpha' = \alpha$ iff G is a KE-graph.

Proof.

- ▶ Suppose $\alpha' = \alpha$.
- Let I be a maximum critical independent set (and a maximum independent set).
- ▶ There is a matching from N(I) into I.
- ightharpoonup Clearly, $\mu = |N(I)|$.
- ▶ So, $\alpha + \mu = |I| + |N(I)| = n$.

Theorem: $\alpha' = \alpha$ iff G is a KE-graph.

- ▶ Now suppose *G* is a KE-graph.
- ▶ Let I_c be a maximum critical independent set, and I be a maximum independent set such that $I_c \subseteq I$.
- ▶ G is KE implies there is a matching from N(I) into I and, in particular, from $N(I) \setminus N(I_c)$ into $I \setminus I_c$.
- ▶ So $|I \setminus I_c| \ge |N(I) \setminus N(I_c)|$.
- ▶ But $|I| |N(I)| = |I \setminus I_c| + |I_c| (|N(I) \setminus N(I_c)| + |N(I_c)|) = (|I_c| |N(I_c)|) + (|I \setminus I_c| |N(I) \setminus N(I_c)|).$
- ▶ So $I = I_c$, and $\alpha' = \alpha$.

A graph is independence irreducible if $\alpha' = 0$.

▶ For these graphs, for every independent set I, |N(I)| > |I|.

$$I_c=\emptyset$$
 is the unique critical independent set, So, $lpha'=|I_c|=0$.

An Independence Decomposition

Theorem: For any graph G, there is a unique set $X \subseteq V(G)$ such that

- 1. $\alpha(G) = \alpha(G[X]) + \alpha(G[X^c]),$
- 2. G[X] is totally independence reducible $(\alpha' = \alpha)$,
- 3. $G[X^c]$ is independence irreducible ($\alpha' = 0$), and
- 4. for every maximum critical independent set J_c of G, $X = J_c \cup N(J_c)$.

An Independence Decomposition

- \triangleright X is orange, X^c is green,
- G[X] is totally reducible $(\alpha' = \alpha)$, and
- ▶ $G[X^c]$ is independence irreducible $(\alpha' = 0)$.

An Independence Decomposition

- $\qquad \qquad \alpha(G) = \alpha(G[X]) + \alpha(G[X^c]) = 3.$
- ► Every graph decomposes into a KE graph and a graph where every independent set *I* has more than |*I*| neighbors.

A Question: For what graphs does $\alpha = \mu$?

$$\alpha = \mu = 3$$
.

A Matching Decomposition

Corollary

If J_c is a maximum critical independent set of G and $X = J_c \cup N(J_c)$, then

$$\mu(G) = \mu(G[X]) + \mu(G[X^c]).$$

- Every graph can be decomposed into a KE graph and a graph where, for every independent et I, I has more than |I| neighbors.
- ▶ For KE graphs, $\alpha \ge \mu$.

The Matching Lemma (II.)

Lemma

If G is independence irreducible ($\alpha' = 0$), and I is any independent set, them there is a matching from I into N(I).

- This follows from Hall's Theorem.
- ▶ For independence irreducible graphs, $\alpha \leq \mu$.

A Hint

Given the independence decomposition $V(G) = X \cup X^c$,

- $\qquad \qquad \alpha(G[X]) \geq \mu(G[X]),$
- $\qquad \qquad \alpha(G[X^c]) \leq \mu(G[X^c]),$
- $\qquad \qquad \alpha(G) = \alpha(G[X]) + \alpha(G[X^c]),$
- $\mu(G) = \mu(G[X]) + \mu(G[X^c]).$

So, $\alpha = \mu$ implies $\alpha(G[X]) - \mu(G[X]) = \mu(G[X^c]) - \alpha(G[X^c])$.

Selected References

- E. DeLaVina, Written on the Wall II, Conjectures of Graffiti.pc, at: http://cms.dt.uh.edu/faculty/delavinae/research/wowII/
- ▶ R. W. Deming, Independence Numbers of Graphs—an Extension of the Koenig-Egervary Theorem, *Discrete Mathematics*, 27 (1979) 23–33.
- C.-Q. Zhang, Finding critical independent sets and critical vertex subsets are polynomial problems, SIAM J. Discrete Mathematics, 3:431–438, 1990.
- S. Butenko and S. Trukhanov, Using Critical Sets to Solve the Maximum Independent Set Problem, *Operations Research* Letters 35(4) (2007) 519–524.
- ► C. E. Larson, A Note on Critical Independent Sets, Bulletin of the Institute of Combinatorics and its Applications, Sept. 2007.
- ► C. E. Larson, The Critical Independence Number and an Independence Decomposition, submitted.