A pair of vertices x and y in a graph G are said to be resolved by a vertex w if the distance from x to w is not equal to the distance from y to w. We say that G is resolved by a subset $W \subseteq V(G)$ if every pair of vertices in G is resolved by some vertex in W. The minimum cardinality of a resolving set for G is called the metric dimension of G. The metric dimension of a graph has applications in network discovery and verification, combinatorial optimization and chemistry. There is great interest in finding classes of graphs with bounded metric dimension, where the metric dimension does not grow with the number of vertices. In this talk, we bound the metric dimension of a class of circulant graphs and their Cartesian products. This is joint work with my student Kevin Chau.