On Generation of Graphs with Geometric Representations

Ryuhei Uehara
Japan Advanced Institute of Science and Technology (JAIST)
based on the following papers:

Based on the following papers:

“Random Generation and Enumeration of ?? graphs” (w/o labels)

- proper interval graphs
- bip. permutation graphs
- graphs that have geometric representations

- No skip
- No duplicate
 ... up to isomorphism

Our Algorithms

Random Generation
- **Input**: Natural number n
- **Output**: Connected graph of n vertices
 - Uniformly at random
 - Using a counting algorithm
 - $O(n+m)$ time (m: #edges)

Enumeration
- **Input**: Natural number n
- **Output**: All the connected graphs of n vertices
 - Without duplication
 - Based on reverse search algorithm
 - $O(1)$ time/graph
Known Algorithms

- Generation of a string of parentheses
 - D.B. Arnold and M.R. Sleep, 1980
 - Can’t generate P.I.G. uniformly at random
 - Not one-to-one correspondence

- Enumeration of strings of parentheses
 - D.E. Knuth, 2005
 - Can’t enumerate every P.I.G. in $O(1)$ time
 - Constant size of differences in string
 \iff Large size of differences in P.I.G.
Interval Graphs

Have interval representations
Proper Interval Graphs
= Unit interval graphs

Every interval has the same length

Have unit interval representations

String representations
Definition

String Representation

Encodes a unit interval representation by a string

- Sweep the unit interval representation from left to right
 - Left endpoint → “(” : left parenthesis
 - Right endpoint → “)” : right parenthesis

Right endpoints appear in order of their left endpoint appearances

Unit Interval Representation

((((()))())(())())

String Representation
String Representation

Height = \# "(" - \# ")"

Property of string rep. of P. I. G. of \(n \) vertices

- Number of parentheses: \(2n \)
 - Number of "(": \(n \)
 - Number of "): \(n \)
- Non-negative
 - Each left parenthesis exists in the left side of its right parenthesis

Each number is non-negative

```
( ( ( ( ) ) ) ( ( ) ) )
```

```
+1 +1 +1 -1 -1 +1 +1 -1 -1 -1
```

```
0 1 2 3 2 1 2 3 2 1 0
```

Height

Each number is non-negative
String Representation

Observation 1

- String rep. of connected P. I. G.
 - Have exactly 2 places whose heights are 0.
 - The left end and the right end

The string removing both ends parentheses is non-negative

```
( ( ( ( ) ) ) ( ( ) ) )
```
Lemma 1. (X. Dell, P. Hell, J. Huang, 1996)

A connected P. I. G. has only one or two string rep.

This graph has only two string representations.

Proper Interval Graph \[\rightarrow \] Unit Interval Rep. \[\rightarrow \] String Rep.

Different strings
Lemma 1. (X. Dell, P. Hell, J. Huang, 1996)

A connected Proper Interval Graph has only one or two string rep.

This graph has only one string representation.

Proper Interval Graph → Unit Interval Rep. → String Rep. reversible
Random Generation Algorithm

- Generate a string rep. uniformly at random
 - Using a counting algorithm
 - (Generalized) Catalan number
 \[\left(\left(\left(\left(\left(\right) \right) \right) \right) \right) \)

String rep. : Path on the area

\[C(n') = \frac{1}{n'+1} \binom{2n'}{n'} \]
Adjust the Generation Probability

Not easy

Decrease the generation probability

String rep.

Non-reversible strings

\[(((())))) \]

\[(((())))) \]

Reversible strings

\[(())(())(()) \]

A generation probability of a graph corresponding to non-reversible strings is higher than that of reversible one
Adjust the Generation Probability

\[S_n : \# \text{non-reversible strings} \]
\[R_n : \# \text{reversible strings} \]

\[S_n + R_n = C(n) \]
\[R_n = \left\lfloor \frac{n}{2} \right\rfloor \]

Case 1

\[
\text{Prob} : \frac{S_n + R_n}{S_n + 2R_n}
\]

<table>
<thead>
<tr>
<th>Non-reversible strings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(() () () ())</td>
</tr>
<tr>
<td>(() () () ())</td>
</tr>
</tbody>
</table>

Case 2

\[
\text{Prob} : \frac{R_n}{S_n + 2R_n}
\]

<table>
<thead>
<tr>
<th>Reversible strings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(() () ())</td>
</tr>
<tr>
<td>(() () ())</td>
</tr>
</tbody>
</table>

String rep.

Uniformly at random
Case 1

Generalized Catalan Number

\[C(n, i) = \frac{i}{2n+i} \binom{2n+i}{n} \]

Generation of a string uniformly at random

- Generate parentheses from left
- Select "(" or "")"

\[(((())) (())) \]

- String Rep.: \(O(n) \)
- Graph Rep.: \(O(n+m) \)

- \(p = C(k, h_l) \)
- \(q = C(k, h_r) \)

\["(" : \frac{p}{p+q} = \frac{h(k+h+2)}{2k(h+1)} \]

\["\)" : \frac{q}{p+q} = \frac{(k-h)(h+2)}{2k(h+1)} \]

\(k \): # remaining parentheses

\(h \): Height

\(m \): # edges
Case 2

Generation of reversible string uniformly at random

- Generate a half of the string from the center to the right end
 1. Choose the height at the center
 2. Generate parentheses from the center
 - Select “(” or “)"

\[p = C(k, h_l) \]
\[q = C(k, h_r) \]

\[\frac{h+1}{n+1} \left(\frac{n+1}{n-h/2} \right) \]

\[\frac{p}{p+q} = \frac{h(k+h+2)}{2k(h+1)} \]

\[\frac{q}{p+q} = \frac{(k-h)(h+2)}{2k(h+1)} \]

\[k: \# \text{remaining parentheses} \]
\[h: \text{Height} \]

Time complexity
- String Rep.: \(O(n) \)
- Graph Rep.: \(O(n+m) \)
 \(m: \# \text{edges} \)
Permutation Graphs

A graph is called a permutation graph if the graph has a line representation.

Line representation

Permutation Graph
A permutation graph is called a *bipartite permutation graph* if the graph is bipartite.

Bipartite permutation graph

Random generation (and enumeration) of bipartite permutation graphs
Useful Property of Connected Bipartite Permutation Graphs

Lemma 1

In a line representation

Blue line (corresponds to a vertex in X): from upper left to lower right

Red line (corresponds to a vertex in Y): from upper right to lower left

Any two lines with the same color have no intersection

Bipartite permutation graph

Dyck path

Line representation

0-1 binary string

Dyck path
How to Construct Dyck Path from 0-1 Binary String

Sweep the two lines alternately

For each character,
- ‘1’ ⇒ go right and go up
- ‘0’ ⇒ go right and go down
Connected Bipartite Permutation Graph with n Vertices

Property of Dyck path
The last coordinate is $(2n, 0)$
The upper / lower lines have n ‘1’s and n ‘0’s
Located on the upper side of x-axis
For all points but $(0,0)$ and $(2n,0)$, its value of y-coordinate is equal or greater than 1
Connected Bipartite Permutation Graph with n Vertices

Property of Dyck path

The last coordinate is $(2n, 0)$

The upper / lower lines have n ‘1’s and n ‘0’s

Located on the upper side of x-axis

For all points but $(0,0)$ and $(2n,0)$, its value of y-coordinate is equal or greater than 1

For random generation, it is sufficient to generate a Dyck path randomly?

No
The Reason of “No”

There is *no* 1 to 1 correspondence between connected bipartite permutation graphs and their line representations.

A graph corresponds to *at most four* line representations.

Examples

- Four line reps.
- Two line reps.
- One line rep.
Equivalent Line Representations

Lemma 2

There exists \textit{at most four} line representations for any connected bipartite permutation graph.

This graph corresponds to \textit{four} line representations.
Lemma 2

There exists \textit{at most four} line representations for any connected bipartite permutation graph.

This graph corresponds to \textit{two} line representations.
Lemma 2
There exists \textit{at most four} line representations for any connected bipartite permutation graph.

Other examples:

- Vertical-symmetric line representation
- Rotational-symmetric line representation

Corresponding graphs have \textit{two} line representations resp.
Lemma 2

There exists \textit{at most four} line representations for any connected bipartite permutation graph.

Horizontal, vertical, rotational-symmetric line representation

Bipartite Permutation Graph

This graph have \textit{one} line representation
Generate a Line Representation Randomly

A set of line representations

If we generate a line representation randomly,

A graph corresponding to four line reps. is frequently generated
Our Approach: Normalization of Probability

A set of line representations

Horizontal-symmetric, H-, V-, R-symmetric, Rotational symmetric

Any graph corresponds to the four line representations

Our random generation:
1. Choose one among 4 groups
2. Randomly generate the chosen one
Conclusions and Future Works

Conclusions

For \{prop. interval|bipartite permutation\} graphs, we have designed the algorithms:

- Random generation algorithms: $O(n+m)$ time
- Enumeration algorithms: $O(1)$ time / graph

Future works

- Random generation and enumeration of \textit{interval graphs} and \textit{permutation graphs} graph classes such that the GI problem is poly-time solvable?