Algebraic Hypergraph Decompositions

Shonda Gosselin

University of Winnipeg
MANITOBA

CanaDAM
Memorial University of Newfoundland
June 13, 2013
Paley graphs
t-complementary hypergraphs
Generalized Paley hypergraphs
Outline

Paley graphs

t-complementary hypergraphs

Generalized Paley hypergraphs
Outline

Paley graphs

t-complementary hypergraphs

Generalized Paley hypergraphs
The Paley graph

Definition
For a prime power \(q \equiv 1 \pmod{4} \) and a finite field \(\mathbb{F}_q \), the **Paley graph of order** \(q \), denoted by \(\text{Paley}(q) \), is the simple graph with vertex set \(V = \mathbb{F}_q \) and edge set \(E \), where

\[\{x, y\} \in E \iff x - y \text{ is a nonzero square.} \]
Paley graphs

t-complementary hypergraphs

Generalized Paley hypergraphs

Paley(13)
Paley graphs

Paley(13)
Paley graphs

- 5-Paley graph
- 9-Paley graph
- 13-Paley graph
- 17-Paley graph
- 25-Paley graph
- 29-Paley graph
- 37-Paley graph
- 41-Paley graph
Paley graphs

Paley(q) **is self-complementary**

If ω is a generator of \mathbb{F}_q^*, then

$$x - y \in \langle \omega^2 \rangle \iff \omega x - \omega y = \omega(x - y) \notin \langle \omega^2 \rangle.$$

$T_{\omega,0} : x \mapsto \omega x$ is an isomorphism from $Paley(q)$ to its complement. □
Paley(q) is vertex-transitive

For $b \in \mathbb{F}_q$,

$$x - y \in \langle \omega^2 \rangle \iff (x + b) - (y + b) = x - y \in \langle \omega^2 \rangle$$

$T_{1,b} : x \mapsto x + b$ is an automorphism of $\text{Paley}(q)$.

$\{ T_{1,b} : b \in \mathbb{F}_q \}$ acts transitively on \mathbb{F}_q.

$\text{Aut}(\text{Paley}(q))$ is an index-2 subgroup of the affine group $A\Gamma L(1, q)$
Outline

Paley graphs

t-complementary hypergraphs

Generalized Paley hypergraphs
Definition
A simple k-uniform hypergraph X with vertex set V and edge set E is **t-complementary** if there is a permutation θ on V such that the sets

$$E, E^\theta, E^{\theta^2}, \ldots, E^{\theta^{t-1}}$$

partition the set of k-subsets of V.

θ is called a **t-antimorphism** of X (i.e., $\theta \in \text{Ant}_t(X)$).
• The 2-complementary 2-uniform hypergraphs are the **self-complementary graphs**, which have been well studied due to their connection to the graph isomorphism problem.

• The t-complementary k-hypergraphs correspond to **cyclic edge decompositions (cyclotomic factorisations)** of the complete k-uniform hypergraph into t parts.

• The vertex-transitive t-complementary k-uniform hypergraphs correspond to **large sets of isomorphic designs** which are point-transitive.
Outline

Paley graphs

t-complementary hypergraphs

Generalized Paley hypergraphs
The Paley graph - revisited

Definition
For a prime power $q \equiv 1 \pmod{4}$ and a finite field \mathbb{F}_q of order q, the **Paley graph of order q**, denoted by $\text{Paley}(q) = (V, E)$, is the simple graph with $V = \mathbb{F}_q$ and

$$\{x, y\} \in E \iff x - y \in \langle \omega^2 \rangle$$

where ω is a generator of \mathbb{F}_q^*.
Constructing t-complementary k-hypergraphs

Partition a group G into t sets

$$C_0, C_1, \ldots, C_{t-1},$$

where each C_i is a union of cosets of a subgroup S of G.

Find an operation $\Psi : \binom{V}{k} \to G$ and a permutation $\theta : V \to V$ such that

$$\Psi(\{x_1, \ldots, x_k\}) \in C_i \iff \Psi(\{x_1, \ldots, x_k\}^\theta) \in C_{i+s}$$

for some s where $\gcd(s, t) = 1$.

Let $E_i = \left\{ e \in \binom{V}{k} : \Psi(e) \in C_i \right\}$.

Then $X_i = (V, E_i)$ is t-complementary with t-antimorphism θ.
Examples

1. Paley Graphs:
 - \(V = \mathbb{F}_q \).
 - \(G = \mathbb{F}_q^* \).
 - \(S = \langle \omega^2 \rangle \).
 - \(\Psi(\{x, y\}) = x - y \).

2. Generalized Paley \(k \)-hypergraphs:
 - \(V = \mathbb{F}_q \).
 - \(G \) is the group of squares of \(\mathbb{F}_q^* \).
 - \(S = \langle \omega^{2t(\binom{k}{2})} \rangle \).
 - \(\Psi(\{x_1, x_2, \ldots, x_k\}) = \prod_{i<j}(x_i - x_j)^2 \).
The Generalized Paley Hypergraph \(\text{Paley}(q, k, t) \)

Definition

- \(t \) is prime, \(\ell \) is the highest power of \(t \) dividing \(k \) or \(k - 1 \).
- \(q \) is a prime power, \(q \equiv 1 \pmod{t^{\ell+1}} \)
- \(G \) is the group of squares in \(\mathbb{F}_q^* \).
- \(S = \langle \omega^{2t} \binom{k}{2} \rangle \).
- \(c = \gcd(|G|, \binom{k}{2}) \). \(t \)\(c \) is the number of cosets of \(S \) in \(G \).
- \(F_i \) is the coset \(\omega^{2i} \langle \omega^{2t} \binom{k}{2} \rangle \) in \(G \) \((0 \leq i \leq tc - 1)\).
- \(C_j = F_{jc+0} \cup F_{jc+1} \cup \cdots \cup F_{(j+1)c-1} \) \((0 \leq j \leq t - 1)\).

The **Generalized Paley Hypergraph** \(\text{Paley}(q, k, t) = (V, E) \) is the simple \(k \)-hypergraph with \(V = \mathbb{F}_q \) and

\[
\{x_1, x_2, \ldots, x_k\} \in E \iff \prod_{i<j} (x_i - x_j)^2 \in C_0.
\]
$P(q, k, t)$ is t-complementary

\[
\prod_{i < j} (x_i - x_j)^2 \in F_i
\]

\[
\iff \prod_{i < j} (\omega x_i - \omega x_j)^2 = \omega^{2(\frac{k}{2})} \prod_{i < j} (x_i - x_j)^2 \in F_{i+sc},
\]

where $\gcd(s, t) = 1$.

$T_{\omega, 0} : x \rightarrow \omega x$ is a t-antimorphism of $Paley(q, k, t)$.
$Paley(q, k, t)$ is vertex-transitive

For $b \in \mathbb{F}_q$,

$$\prod_{i<j}(x_i - x_j)^2 \in F_i$$

$$\iff \prod_{i<j}((x_i + b) - (x_j + b))^2 = \prod_{i<j}(x_i - x_j)^2 \in F_i.$$

$T_{1,b} : x \rightarrow x + b$ is an automorphism of $Paley(q, k, t)$.
Automorphisms and t-antimorphisms of $Paley(q, k, t)$

\[\text{Aut}(Paley(q, k, t)) \geq \{ T_{a,b} \mid a = \omega^s, s \equiv 0 \pmod{t}, b \in \mathbb{F}_q \} \]

\[\text{Ant}_t(Paley(q, k, t)) \supseteq \{ T_{a,b} \mid a = \omega^s, s \not\equiv 0 \pmod{t}, b \in \mathbb{F}_q \}. \]

\[T_{a,b} : x \mapsto ax + b \]

$\text{Aut}(Paley(q, k, t))$ contains an index-t subgroup of the affine group $\text{AGL}(1, q)$.
Generalized Paley hypergraph constructions

- $t = 2, k = 2$ (Paley)
- $t = 2, k = 3$ (Kocay, 1992)
- $t = 2, k = 2$, r-factor (Peisert, 2001)
- $t, k = 2$ (Li, Praeger 2003)(Li, Lim and Praeger 2009)
- $t = 2$, any k (Potočnik and Šajna, 2009)
- Odd prime t, any k, r-factor (G. 2011)
n not a prime power?
Construction: Generalized Paley k-hypergraph

- $n \geq k$, $n = q_1 q_2 \cdots q_s$ is the prime power decomposition of n.

- ℓ is the largest power of t that divides m or $m - 1$ for $2 \leq m \leq k$.

- $q_i \equiv 1 \pmod{t^{\ell + 1}}$ for $i = 1, 2, \ldots, s$.

- $V := F_{q_1} \times F_{q_2} \times \cdots \times F_{q_s}$.

- Define $Paley(n, k, t) = (V, E)$, where
\[
E = \left\{ \{x_{11}, x_{12}, \ldots, x_{1j}, \ldots, x_{1s}\}, \{x_{21}, x_{22}, \ldots, x_{2j}, \ldots, x_{2s}\}, \{x_{31}, x_{32}, \ldots, x_{3j}, \ldots, x_{3s}\}, \ldots, \{x_{kj}, x_{kj}, \ldots, x_{ks}\} \right\}
\]

\(j\) is the smallest integer in \(\{1, 2, \ldots, s\}\) for which \(j\)-th coordinates of the elements in \(E\) are not all equal.

\(E \in \mathcal{E}\) if and only if the \(j\)-th coordinates form an edge of \(\text{Paley}(q_j, k, t)\).

\(\text{Paley}(n, k, t)\) is vertex-transitive and \(t\)-complementary.
Conditions on order

Theorem
Let t be prime, let ℓ and b be positive integers such that $1 \leq b \leq t - 1$, and suppose that k or $k - 1$ equals bt^ℓ. Suppose n is a positive integer, $n > k$, and $n = q_1 q_2 \cdots q_s$ is its prime power decomposition. If $n \equiv 1 \pmod{t^{\ell+1}}$, then there exists a vertex-transitive t-complementary k-hypergraph of order n if and only if

$q_i \equiv 1 \pmod{t^{\ell+1}} \quad \text{for } 1 \leq i \leq s.$

Necessity: $t = 2, k = 2$ (Muzychuk, 1992);
$t = 2$ (Potočnik, Šajna, 2007); t prime (G. 2010)

Sufficiency: $t = 2, k = 2$ (Rao, 1985);
$t = 2$, any k, n a prime power (Potočnik, Šajna, 2009);
t prime, any k, any n (G. 2010)
Conditions on order

Theorem
Let t be prime, let ℓ and b be positive integers such that $1 \leq b \leq t - 1$, and suppose that k or $k - 1$ equals bt^ℓ. Suppose n is a positive integer, $n > k$, and $n = q_1 q_2 \cdots q_s$ is its prime power decomposition. If $n \equiv 1 \pmod{t^{\ell+1}}$, then there exists a vertex-transitive t-complementary k-hypergraph of order n if and only if

$$q_i \equiv 1 \pmod{t^{\ell+1}} \quad \text{for} \ 1 \leq i \leq s.$$

Necessity: $t = 2, k = 2$ (Muzychuk, 1992); $t = 2$ (Potočnik, Šajna, 2007); t prime (G. 2010)

Sufficiency: $t = 2, k = 2$ (Rao, 1985); $t = 2$, any k, n a prime power (Potočnik, Šajna, 2009); t prime, any k, any n (G. 2010)
Raymond Paley (1907-1933)