Cycle-continuous mappings – order structure

Robert Šámal

Computer Science Institute, Charles University, Prague

CanaDAM, June 12, 2013
Memorial University, St. John’s, Newfoundland, Canada
Outline

1. Introduction

2. Our results
 - Snarks
 - Tree of snarks

3. Future work
Nice open problem

Problem (Cycle Double Cover [Seymour, Szekeres, Tutte?])

For every bridgeless graph G exists a list cycles C_1, \ldots, C_k such that every edge of G is in exactly two of them.

- possibly we may take $k = 5$ [Celmins, Preissmann]
- *cycle* = even graph = set of edges with all degrees even
Problem (Cycle Double Cover [Seymour, Szekeres, Tutte?])

For every bridgeless graph G exists a list cycles C_1, \ldots, C_k such that every edge of G is in exactly two of them.

- Possibly we may take $k = 5$ [Celmins, Preissmann]
- *Cycle = even graph = set of edges with all degrees even*
Nice open problem

Problem (Cycle Double Cover [Seymour, Szekeres, Tutte?])

For every bridgeless graph G exists a list cycles \(C_1, \ldots, C_k \) such that every edge of G is in exactly two of them.

- possibly we may take \(k = 5 \) [Celmins, Preissmann]
- \textit{cycle} = even graph = set of edges with all degrees even
An approach

Definition (Jaeger 1980/DeVos, Nešetřil, Raspaud 2006)

\(G, H \) \ldots graphs
\(f : E(G) \rightarrow E(H) \) \ldots mapping
\(f \) is cycle-continuous (cc) iff for every cycle \(C \) in \(H \) the preimage \(f^{-1}(C) \) is a cycle in \(G \). The existence of some cycle-continuous mapping from \(G \) to \(H \) is denoted by \(G \xrightarrow{cc} H \).

- For a cubic graph \(G \xrightarrow{cc} K_2^3 \) iff \(G \) admits a 3-edge-coloring
- Let a mapping \(f : E(G) \rightarrow E(H) \) be such that for each vertex \(v \) of \(G \), it maps all edges incident with \(v \) to all edges incident with some vertex of \(H \). Then \(f \) is cycle-continuous.
An approach

Definition (Jaeger 1980/DeVos, Nešetřil, Raspaud 2006)

$G, H \ldots$ graphs
$f : E(G) \to E(H) \ldots$ mapping
f is **cycle-continuous** (cc) iff for every cycle C in H the preimage $f^{-1}(C)$ is a cycle in G. The existence of some cycle-continuous mapping from G to H is denoted by $G \xrightarrow{cc} H$.

- For a cubic graph $G \xrightarrow{cc} K_3^2$ iff G admits a 3-edge-coloring
- Let a mapping $f : E(G) \to E(H)$ be such that for each vertex v of G, it maps all edges incident with v to all edges incident with some vertex of H. Then f is cycle-continuous.
An approach

Definition (Jaeger 1980/DeVos, Nešetřil, Raspaud 2006)

\(G, H\) ... graphs
\(f : E(G) \rightarrow E(H)\) ... mapping
\(f\) is \textit{cycle-continuous} (cc) iff for every cycle \(C\) in \(H\) the preimage \(f^{-1}(C)\) is a cycle in \(G\). The existence of some cycle-continuous mapping from \(G\) to \(H\) is denoted by \(G \xrightarrow{cc} H\).

- For a cubic graph \(G \xrightarrow{cc} K_2^3\) iff \(G\) admits a 3-edge-coloring
- Let a mapping \(f : E(G) \rightarrow E(H)\) be such that for each vertex \(v\) of \(G\), it maps all edges incident with \(v\) to all edges incident with some vertex of \(H\). Then \(f\) is cycle-continuous.
An approach

Definition (Jaeger 1980/DeVos, Nešetřil, Raspaud 2006)

$G, H \ldots$ graphs
\[f : E(G) \to E(H) \ldots \text{ mapping} \]
\[f \text{ is } \text{cycle-continuous} \ (cc) \text{ iff for every cycle } C \text{ in } H \text{ the preimage } f^{-1}(C) \text{ is a cycle in } G. \] The existence of some cycle-continuous mapping from G to H is denoted by $G \xrightarrow{cc} H$.

- For a cubic graph $G \xrightarrow{cc} K_2^3$ iff G admits a 3-edge-coloring
- Let a mapping $f : E(G) \to E(H)$ be such that for each vertex v of G, it maps all edges incident with v to all edges incident with some vertex of H. Then f is cycle-continuous.
The hope

Conjecture (Jaeger 1981)

Every bridgeless graph has a cycle continuous mapping to the Petersen graph.

- true for all 3-edge-colorable graphs
- true for all graphs up to 36 vertices
- and many others (e.g., for all Flower snarks)
The hope

Conjecture (Jaeger 1981)

Every bridgeless graph has a cycle continuous mapping to the Petersen graph.

- true for all 3-edge-colorable graphs
- true for all graphs up to 36 vertices
- and many others (e.g., for all Flower snarks)
The hope

Conjecture (Jaeger 1981)

Every bridgeless graph has a cycle continuous mapping to the Petersen graph.

- true for all 3-edge-colorable graphs
- true for all graphs up to 36 vertices
- and many others (e.g., for all Flower snarks)
The hope

Conjecture (Jaeger 1981)

Every bridgeless graph has a cycle continuous mapping to the Petersen graph.

- true for all 3-edge-colorable graphs
- true for all graphs up to 36 vertices
- and many others (e.g., for all Flower snarks)
Related question

Question (DeVos, Nešetřil, Raspaud 2006)

Is there an infinite family of bridgeless graphs such that there is no cycle-continuous mapping between any two of them?

- [DNR] there is an arbitrarily large finite such family
Related question

Question (DeVos, Nešetřil, Raspaud 2006)

Is there an infinite family of bridgeless graphs such that there is no cycle-continuous mapping between any two of them?

- [DNR] there is an arbitrarily large finite such family
Theorem (Š. 2012)

There is an infinite family of bridgeless graphs such that there is no cycle-continuous mapping between any two of them.
Universal poset

Theorem (Š. 2012)
There is an infinite family of bridgeless graphs such that there is no cycle-continuous mapping between any two of them.

Theorem (Š. 2012)
Every countable poset can be represented by a family of bridgeless graphs and existence of cycle-continuous mapping between them.
Outline

1. Introduction
2. Our results
 - Snarks
 - Tree of snarks
3. Future work
Plan of the proof

- In general, the cycle-continuous mapping behaves very erratically.
- We tame it by using specially crafted graphs to make it behave like homomorphisms.
- Critical snarks are crucial for this.
Plan of the proof

- in general the cycle-continuous mapping behaves very erratically
- we tame it by using specially crafted graphs to make it behave like homomorphisms
- critical snarks are crucial for this
in general the cycle-continuous mapping behaves very erratically
we tame it by using specially crafted graphs to make it behave like homomorphisms
critical snarks are crucial for this
Snarks

From now on we deal with cubic graphs only.

- bridgeless graph G is a **snark** if it is not 3-edge-colorable; equivalently, if $G \not\cc \rightarrow K_2^3$
- a snark G is **critical** if for every edge e we have $G - e \cc \rightarrow K_3^3$; equivalently, $G - e$ is not 3-edge-colorable (\overline{H} denoting H with suppressed vertices of degree 2) [DeVos, Nešetřil, Raspaud; da Silva, Lucchesi; Nedela, Škoviera]
- example: Petersen graph, Blanuša snarks on 18 vertices

Theorem (DNR 2006)

Suppose G, H are critical snarks, cyclically 4-edge-connected, $|E(G)| = |E(H)|$.
Then $G \cc \rightarrow H$ iff $G \cong H$.
Moreover, all cycle-continuous mappings from G to H are induced by the isomorphism.
Snarks

From now on we deal with cubic graphs only.

- bridgeless graph G is a **snark** if it is not 3-edge-colorable; equivalently, if $G \not\rightarrow K_3^3$
- a snark G is **critical** if for every edge e we have $G - e \not\rightarrow K_3^3$; equivalently, $G - e$ is not 3-edge-colorable (denoting H with suppressed vertices of degree 2)

[DeVos, Nešetřil, Raspaud; da Silva, Lucchesi; Nedela, Škoviera]

- example: Petersen graph, Blanuša snarks on 18 vertices

Theorem (DNR 2006)

Suppose G, H are critical snarks, cyclically 4-edge-connected, $|E(G)| = |E(H)|$.

Then $G \not\rightarrow H$ iff $G \cong H$.

Moreover, all cycle-continuous mappings from G to H are induced by the isomorphism.
Snarks

From now on we deal with cubic graphs only.

- bridgeless graph G is a \textit{snark} if it is not 3-edge-colorable; equivalently, if $G \xrightarrow{cc} K_2^3$
- a snark G is \textit{critical} if for every edge e we have $G - e \xrightarrow{cc} K_3^3$; equivalently, $G - e$ is not 3-edge-colorable (\overline{H} denoting H with suppressed vertices of degree 2) [DeVos, Nešetřil, Raspaud; da Silva, Lucchesi; Nedela, Škoviera]
- example: Petersen graph, Blanuša snarks on 18 vertices

\textbf{Theorem (DNR 2006)}

Suppose G, H are critical snarks, cyclically 4-edge-connected, $|E(G)| = |E(H)|$.
Then $G \xrightarrow{cc} H$ iff $G \cong H$.
Moreover, all cycle-continuous mappings from G to H are induced by the isomorphism.
Snarks

From now on we deal with cubic graphs only.

- bridgeless graph G is a **snark** if it is not 3-edge-colorable; equivalently, if $G \xrightarrow{cc} K_2^3$
- a snark G is **critical** if for every edge e we have $G - e \xrightarrow{cc} K_3^3$; equivalently, $G - e$ is not 3-edge-colorable (\overline{H} denoting H with suppressed vertices of degree 2) [DeVos, Nešetřil, Raspaud; da Silva, Lucchesi; Nedela, Škoviera]
- example: Petersen graph, Blanuša snarks on 18 vertices

Theorem (DNR 2006)

Suppose G, H are critical snarks, cyclically 4-edge-connected, $|E(G)| = |E(H)|$.

Then $G \xrightarrow{cc} H$ iff $G \cong H$.

Moreover, all cycle-continuous mappings from G to H are induced by the isomorphism.
Critical snarks

Lemma

There are two snarks B_1, B_2 with 18 vertices, that are critical and nonisomorphic. Moreover, none of B_1, B_2 is vertex transitive; in particular, there is no isomorphism $f : V(B_2) \rightarrow V(B_2)$ for which $f(a) = b$.

![Diagram of two snarks with 18 vertices](image)
Snark constructions: 3-join

Lemma

For any graphs G_1, G_2 we have $G_i \xrightarrow{cc} G_1 \oplus_3 G_2$ for $i = 1, 2$.

Lemma

Let G_1, G_2 be graphs.
Let K be a cyclically 4-edge-connected cubic graph that is 2-transitive.
Then $G_1 \oplus_3 G_2 \xrightarrow{cc} K$ if and only if $G_1 \xrightarrow{cc} K$ and $G_2 \xrightarrow{cc} K$.
Snark constructions: 3-join

\[
\begin{align*}
\bigoplus_3 G_1 & \rightarrow G_1 \oplus_3 G_2 \\
\end{align*}
\]

\[
\begin{align*}
\Leftrightarrow & \\
\end{align*}
\]

Lemma

For any graphs \(G_1, G_2 \) we have \(G_i \xrightarrow{cc} G_1 \oplus_3 G_2 \) for \(i = 1, 2 \).

Lemma

Let \(G_1, G_2 \) be graphs. Let \(K \) be a cyclically 4-edge-connected cubic graph that is 2-transitive. Then \(G_1 \oplus_3 G_2 \xrightarrow{cc} K \) if and only if \(G_1 \xrightarrow{cc} K \) and \(G_2 \xrightarrow{cc} K \).
Snark constructions: 3-join

\[\oplus_3 \]

\[\equiv \]

Lemma

For any graphs \(G_1, G_2 \) we have \(G_i \xrightarrow{cc} G_1 \oplus_3 G_2 \) for \(i = 1, 2 \).

Lemma

Let \(G_1, G_2 \) be graphs.
Let \(K \) be a cyclically 4-edge-connected cubic graph that is 2-transitive.
Then \(G_1 \oplus_3 G_2 \xrightarrow{cc} K \) if and only if \(G_1 \xrightarrow{cc} K \) and \(G_2 \xrightarrow{cc} K \).
Lemma

Let G_1, G_2 be graphs. Let K be a cyclically 4-edge-connected cubic graph that is 2-transitive. Then $G_1 \oplus_3 G_2 \stackrel{cc}{\longrightarrow} K$ if and only if $G_1 \stackrel{cc}{\longrightarrow} K$ and $G_2 \stackrel{cc}{\longrightarrow} K$.

Corollary

Let G_1, G_2 be cubic bridgeless graphs. Then $G_1 \oplus_3 G_2$ is a snark, iff at least one of G_1, G_2 is a snark.

Corollary

Let G_1, G_2 be cubic bridgeless graphs. If $G_1 \oplus_3 G_2 \not\stackrel{cc}{\longrightarrow} \text{Pt}$ then $G_i \not\stackrel{cc}{\longrightarrow} \text{Pt}$ for some $i \in \{1, 2\}$.
Lemma

Let G_1, G_2 be graphs.
Let K be a cyclically 4-edge-connected cubic graph that is 2-transitive.
Then $G_1 \oplus_3 G_2 \xrightarrow{cc} K$ if and only if $G_1 \xrightarrow{cc} K$ and $G_2 \xrightarrow{cc} K$.

Corollary

Let G_1, G_2 be cubic bridgeless graphs. Then $G_1 \oplus_3 G_2$ is a snark, iff at least one of G_1, G_2 is a snark.

Corollary

Let G_1, G_2 be cubic bridgeless graphs. If $G_1 \oplus_3 G_2 \not\xrightarrow{cc} Pt$ then $G_i \not\xrightarrow{cc} Pt$ for some $i \in \{1, 2\}$.
Introduction

Our results
- Snarks
- Tree of snarks

Future work
Tree of snarks – construction

G_1 G_2 G_3
Tree of snarks – construction
Tree of snarks – construction

G_1 G_2 G_3
Tree of snarks – construction
Tree of snarks – construction

G_1 G_2 G_3
Tree of snarks – construction

\[G_1 \quad G_2 \quad G_3 \]
Tree of snarks – construction

$$\mathcal{G} = \{G_1, G_2, G_3, \ldots\}$$

$$\mathcal{T}(\mathcal{G})$$

Critical snarks
Tree of snarks – properties

Lemma

\(\mathcal{G} \) – critical snarks, cyclically 4-edge-connected, pairwise nonisomorphic, all of the same size

\(H \in T(\mathcal{G}) \) and \(K \in \mathcal{G} \)

Then

\[K \overset{\text{cc}}{\longrightarrow} H \iff K \cong G_i \text{ for some } G_i \in \mathcal{G} \text{ s.t. } i \text{ used on } T \]

Moreover, all mappings \(K \overset{\text{cc}}{\longrightarrow} H \) are an isomorphism on \(K \) composed with \(\iota_v \) for some \(v \in V(G) \) for which \(c(v) = i \).
Tree of snarks – properties

Lemma

\mathcal{G} – critical snarks, cyclically 4-edge-connected, pairwise nonisomorphic, all of the same size

$H \in T(\mathcal{G})$ and $K \in \mathcal{G}$

Then

$$K \overset{cc}{\rightarrow} H \iff K \cong G_i \text{ for some } G_i \in \mathcal{G} \text{ s.t. } i \text{ used on } T$$

Moreover, all mappings $K \overset{cc}{\rightarrow} H$ are an isomorphism on K composed with ι_v for some $v \in V(G)$ for which $c(v) = i$.
Tree of snarks – properties

G_1 G_2 G_3
Tree of snarks – properties

$T(G)$

G_4
Tree of snarks – properties

\[T(G) \]

\[G_4 \]
Tree of snarks – properties

Theorem

\[T_1, T_2 \ldots \text{trees} \]
\[c_i : V(T_i) \to [n], H_i \in T_i(G) \ (i = 1, 2) \]

Every \(g : H_1 \xrightarrow{\text{cc}} H_2 \) is guided by a homomorphism \(f : T_1 \to T_2 \) of reflexive colored graphs: \(\exists f : V(T_1) \to V(T_2) \) such that

- \(c_2(f(v)) = c_1(v) \) \(f \) respects colors, and
- if \(uv \) is an edge of \(T_1 \), then \(f(u)f(v) \) is an edge of \(T_2 \) or \(f(u) = f(v) \).

Moreover, \(g \) induces a cc mapping on the blocks.
Theorem

$T_1, T_2 \ldots$ trees

c_i : V(T_i) \rightarrow [n], H_i \in T_i(G) \ (i = 1, 2)$

Every $g : H_1 \xrightarrow{cc} H_2$ is guided by a homomorphism $f : T_1 \rightarrow T_2$ of reflexive colored graphs: $\exists f : V(T_1) \rightarrow V(T_2)$ such that

- $c_2(f(v)) = c_1(v)$ f respects colors, and
- if uv is an edge of T_1, then $f(u)f(v)$ is an edge of T_2 or $f(u) = f(v)$.

Moreover, g induces a cc mapping on the blocks
Tree of snarks – properties
Tree of snarks – properties
Infinite antichain

Theorem (Š. 2012)

There is an infinite family of bridgeless graphs such that there is no cycle-continuous mapping between any two of them.

Proof:

- \(\mathcal{G} = \{B_1, B_2\} \), fix \(a, b \in V(B_2) \) so that no automorphism maps \(a \mapsto b \)
- \(T_n = \) a path colored as \(1(2)^{n-1}1 \)
- \(G_n \in T_n(\mathcal{G}) \), taking always “\(a \) on the left, \(b \) on the right”
- Due to the choice of \(a, b \), the “folding” in the previous figure is not possible.
- Thus, \(\{G_n, n \in \mathbb{N}\} \) is an antichain.
Theorem (Š. 2012)

There is an infinite family of bridgeless graphs such that there is no cycle-continuous mapping between any two of them.

Proof:

1. \(\mathcal{G} = \{B_1, B_2\} \), fix \(a, b \in V(B_2) \) so that no automorphism maps \(a \mapsto b \)
2. \(T_n = \) a path colored as \(1(2)^{n-1}1 \)
3. \(G_n \in T_n(\mathcal{G}) \), taking always “a on the left, b on the right”
4. Due to the choice of \(a, b \), the “folding” in the previous figure is not possible.
5. Thus, \(\{G_n, n \in \mathbb{N}\} \) is an antichain.
Infinite antichain

Theorem (Š. 2012)

There is an infinite family of bridgeless graphs such that there is no cycle-continuous mapping between any two of them.

Proof:

- $\mathcal{G} = \{B_1, B_2\}$, fix $a, b \in V(B_2)$ so that no automorphism maps $a \mapsto b$
- $T_n = \text{a path colored as } 1(2)^{n-1}1$
- $G_n \in T_n(\mathcal{G})$, taking always “a on the left, b on the right”
- Due to the choice of a, b, the “folding” in the previous figure is not possible.
- Thus, $\{G_n, n \in \mathbb{N}\}$ is an antichain.
Infinite antichain

Theorem (Š. 2012)

There is an infinite family of bridgeless graphs such that there is no cycle-continuous mapping between any two of them.

Proof:

1. \(G = \{ B_1, B_2 \} \), fix \(a, b \in V(B_2) \) so that no automorphism maps \(a \mapsto b \)

2. \(T_n = \) a path colored as \(1(2)^{n-1}1 \)
 - \(G_n \in T_n(G) \), taking always “a on the left, b on the right”

3. Due to the choice of \(a, b \), the “folding” in the previous figure is not possible.

4. Thus, \(\{ G_n, n \in \mathbb{N} \} \) is an antichain.
Theorem (Š. 2012)

There is an infinite family of bridgeless graphs such that there is no cycle-continuous mapping between any two of them.

Proof:

- $\mathcal{G} = \{ B_1, B_2 \}$, fix $a, b \in V(B_2)$ so that no automorphism maps $a \mapsto b$
- T_n = a path colored as $1(2)^{n-1}1$
- $G_n \in T_n(\mathcal{G})$, taking always “a on the left, b on the right”
- Due to the choice of a, b, the “folding” in the previous figure is not possible.
- Thus, $\{ G_n, n \in \mathbb{N} \}$ is an antichain.
Another ingredient

Theorem (Hubička, Nešetřil 2005)

Arbitrary countable poset can be represented by finite directed paths and existence of homomorphisms between them.
Universal poset

Theorem (Š. 2012)

Every countable poset can be represented by a family of cubic bridgeless graphs and existence of cycle-continuous mapping between them.
Universal poset

Theorem (Š. 2012)

Every countable poset can be represented by a family of cubic bridgeless graphs and existence of cycle-continuous mapping between them.

Proof:
Universal poset

Theorem (Š. 2012)

Every countable poset can be represented by a family of cubic bridgeless graphs and existence of cycle-continuous mapping between them.

Proof:

- Using Hubička and Nešetřil, we need to find $m : \{\text{dir. paths}\} \rightarrow \{\text{cubic bridgeless graphs}\}$
Universal poset

Theorem (Š. 2012)

Every countable poset can be represented by a family of cubic bridgeless graphs and existence of cycle-continuous mapping between them.

Proof:

- Using Hubička and Nešetřil, we need to find $m : \{\text{dir. paths}\} \rightarrow \{\text{cubic bridgeless graphs}\}$
- $\mathcal{G} = \{ B_2 \}$, fix $a, b \in V(B_2)$ so that no automorphism maps $a \mapsto b$
Universal poset

Proof:

- Using Hubička and Nešetřil, we need to find $m : \{ \text{dir. paths} \} \rightarrow \{ \text{cubic bridgeless graphs} \}$
- $\mathcal{G} = \{ B_2 \}$, fix $a, b \in V(B_2)$ so that no automorphism maps $a \mapsto b$
Universal poset

Proof:

- Using Hubička and Nešetřil, we need to find $m : \{\text{dir. paths}\} \rightarrow \{\text{cubic bridgeless graphs}\}$
- $\mathcal{G} = \{B_2\}$, fix $a, b \in V(B_2)$ so that no automorphism maps $a \mapsto b$
Open problems

- Is there an infinite antichain in cc mappings using cubic, cyclically 4-edge-connected graphs?
- Are there gaps in the poset of cc mappings? I.e., are there G, H s.t. $G \xrightarrow{cc} H$ but for no K we have $G \xrightarrow{cc} K \xrightarrow{cc} H$ unless $K \xrightarrow{cc} G$ or $H \xrightarrow{cc} K$?
- $K_2^3 \xrightarrow{cc} \text{Pt}$ is not a gap – for example $K_2^3 \prec cc B_1 \prec cc \text{Pt}$
- Not to forget the original question: G cubic bridgeless $\Rightarrow G \xrightarrow{cc} \text{Pt}$?
- If G is a minimal counterexample, can G contain a 4-cycle?
Open problems

- Is there an infinite antichain in cc mappings using cubic, cyclically 4-edge-connected graphs?
- Are there gaps in the poset of cc mappings? I.e., are there G, H s.t.
 $G \xrightarrow{cc} H$ but for no K we have $G \xrightarrow{cc} K \xrightarrow{cc} H$ unless $K \xrightarrow{cc} G$ or $H \xrightarrow{cc} K$?
 $K_2^3 \xrightarrow{cc} Pt$ is not a gap – for example $K_2^3 \prec_{cc} B_1 \prec_{cc} Pt$
- Not to forget the original question: G cubic bridgeless $\Rightarrow G \xrightarrow{cc} Pt$?
 If G is a minimal counterexample, can G contain a 4-cycle?
Open problems

- Is there an infinite antichain in cc mappings using cubic, cyclically 4-edge-connected graphs?
- Are there gaps in the poset of cc mappings? I.e., are there G, H s.t.

 $G \xrightarrow{cc} H$ but for no K we have $G \xrightarrow{cc} K \xrightarrow{cc} H$ unless $K \xrightarrow{cc} G$ or $H \xrightarrow{cc} K$?

 $K_2^3 \xrightarrow{cc} \text{Pt}$ is not a gap – for example $K_2^3 \prec_{cc} B_1 \prec_{cc} \text{Pt}$

- Not to forget the original question: G cubic bridgeless

 $\Rightarrow G \xrightarrow{cc} \text{Pt}$?

 If G is a minimal counterexample, can G contain a 4-cycle?
Open problems

- Is there an infinite antichain in cc mappings using cubic, cyclically 4-edge-connected graphs?
- Are there gaps in the poset of cc mappings? I.e., are there G, H s.t. $G \xrightarrow{cc} H$ but for no K we have $G \xrightarrow{cc} K \xrightarrow{cc} H$ unless $K \xrightarrow{cc} G$ or $H \xrightarrow{cc} K$?
 $K_2^3 \xrightarrow{cc} Pt$ is not a gap – for example $K_2^3 \prec_{cc} B_1 \prec_{cc} Pt$
- Not to forget the original question: G cubic bridgeless $\Rightarrow G \xrightarrow{cc} Pt$?
 If G is a minimal counterexample, can G contain a 4-cycle?
Open problems

- Is there an infinite antichain in cc mappings using cubic, cyclically 4-edge-connected graphs?
- Are there gaps in the poset of cc mappings? I.e., are there G, H s.t.
 $G \xrightarrow{cc} H$ but for no K we have $G \xrightarrow{cc} K \xrightarrow{cc} H$ unless
 $K \xrightarrow{cc} G$ or $H \xrightarrow{cc} K$?
 $K^3_2 \xrightarrow{cc} \text{Pt}$ is not a gap – for example $K^3_2 \prec_{cc} B_1 \prec_{cc} \text{Pt}$
- Not to forget the original question: G cubic bridgeless
 $\Rightarrow G \xrightarrow{cc} \text{Pt}$?
 If G is a minimal counterexample, can G contain a 4-cycle?