Bi-angular lines in \mathbb{R}^n

Hadi Kharaghani
Joint work with Darcy Best

University of Lethbridge

CanaDAM 2013

Memorial University of Newfoundland

June 10 – 13, 2013
Bi-angular lines
Bi-angular lines

Mutually unbiased weighing matrices
- Bi-angular lines
- Mutually unbiased weighing matrices
- Mutually Suitable Latin Squares
- Bi-angular lines
- Mutually unbiased weighing matrices
- Mutually Suitable Latin Squares
- The auxiliary matrices corresponding to weighing matrices
- Bi-angular lines
- Mutually unbiased weighing matrices
- Mutually Suitable Latin Squares
- The auxiliary matrices corresponding to weighing matrices
- MU weighing matrices from orthogonal blocks
- Bi-angular lines
- Mutually unbiased weighing matrices
- Mutually Suitable Latin Squares
- The auxiliary matrices corresponding to weighing matrices
- MU weighing matrices from orthogonal blocks
- Biangular lines from orthogonal blocks
Bi-angular lines
Mutually unbiased weighing matrices
Mutually Suitable Latin Squares
The auxiliary matrices corresponding to weighing matrices
MU weighing matrices from orthogonal blocks
Biangular lines from orthogonal blocks
Biangular lines and association schemes
Bi-angular lines in \mathbb{R}^n

Let V be a set of unit vectors in \mathbb{R}^n. V is said to consist of bi-angular lines if $|\langle u, v \rangle| \in \{0, \alpha\}$ for all u and v in V, where $\langle \cdot, \cdot \rangle$ is the standard Euclidean inner product in \mathbb{R}^n and $0 < \alpha < 1$.

Two Hadamard matrices H and K of order n are called unbiased if all the entries of HK^* have modulus \sqrt{n}.

A set M of Hadamard matrices of order n is called mutually unbiased (MU) if every pair of Hadamard matrices in M are unbiased.

Any set of MU Hadamard matrices of order n forms a set of bi-angular lines in \mathbb{R}^n with $\alpha = \frac{1}{\sqrt{n}}$.
Bi-angular lines in \mathbb{R}^n

Let V be a set of unit vectors in \mathbb{R}^n.
Bi-angular lines in \mathbb{R}^n

Let V be a set of unit vectors in \mathbb{R}^n. V is said to consist of bi-angular lines if $|\langle u, v \rangle| \in \{0, \alpha\}$ for all u and v in V, where $\langle \cdot, \cdot \rangle$ is the standard Euclidean inner product in \mathbb{R}^n and $0 < \alpha < 1$. Two Hadamard matrices H and K of order n are called unbiased if all the entries of $HK^* \ast$ have modulus \sqrt{n}. A set M of Hadamard matrices of order n is called mutually unbiased (MU) if every pair of Hadamard matrices in M are unbiased. Any set of MU Hadamard matrices of order n forms a set of bi-angular lines in \mathbb{R}^n with $\alpha = \frac{1}{\sqrt{n}}$.
Bi-angular lines in \mathbb{R}^n

Let V be a set of unit vectors in \mathbb{R}^n. V is said to consist of bi-angular lines if $|\langle u, v \rangle| \in \{0, \alpha\}$ for all u and v in V, where $\langle \cdot, \cdot \rangle$ is the standard Euclidean inner product in \mathbb{R}^n and $0 < \alpha < 1$.

Two Hadamard matrices H and K of order n are called unbiased if all the entries of HK^* have modulus \sqrt{n}.
Bi-angular lines in \mathbb{R}^n

Let V be a set of unit vectors in \mathbb{R}^n. V is said to consist of *bi-angular lines* if $|\langle u, v \rangle| \in \{0, \alpha\}$ for all u and v in V, where $\langle \cdot, \cdot \rangle$ is the standard Euclidean inner product in \mathbb{R}^n and $0 < \alpha < 1$.

Two Hadamard matrices H and K of order n are called *unbiased* if all the entries of HK^* have modulus \sqrt{n}.

A set M of Hadamard matrices of order n is called *mutually unbiased (MU)* if every pair of Hadamard matrices in M are unbiased.
Bi-angular lines in \mathbb{R}^n

Let V be a set of unit vectors in \mathbb{R}^n. V is said to consist of bi-angular lines if $|\langle u, v \rangle| \in \{0, \alpha\}$ for all u and v in V, where $\langle \cdot, \cdot \rangle$ is the standard Euclidean inner product in \mathbb{R}^n and $0 < \alpha < 1$.

Two Hadamard matrices H and K of order n are called unbiased if all the entries of HK^* have modulus \sqrt{n}.

A set M of Hadamard matrices of order n is called mutually unbiased (MU) if every pair of Hadamard matrices in M are unbiased.

Any set of MU Hadamard matrices of order n forms a set of bi-angular lines in \mathbb{R}^n with $\alpha = \frac{1}{\sqrt{n}}$.
Mutually unbiased weighing matrices

Definition
A matrix $W = [w_{ij}]$ of order n and $w_{ij} \in \{-1, 0, 1\}$ is called a \textit{weighing matrix with weight p} if $WW^t = pI_n$, where I_n is the identity matrix of order n.

A $W(n, n)$ is a Hadamard matrix of order n.

Two weighing matrices W_1, W_2 of order n and weight p are called \textit{unbiased} if $W_1W_2^t = \sqrt{p}W$, where W is a weighing matrix of order n and weight p.

A set of weighing matrices is called \textit{mutually unbiased (MU)} if every pair of weighing matrices are unbiased.

Any set of MU weighing matrices of order n and weight p forms a set of bi-angular lines in \mathbb{R}^n with $\alpha = \frac{1}{\sqrt{p}}$.
Mutually unbiased weighing matrices

Definition
A matrix $W = [w_{ij}]$ of order n and $w_{ij} \in \{-1, 0, 1\}$ is called a weighing matrix with weight p if $WW^t = pI_n$, where I_n is the identity matrix of order n. A $W(n,n)$ is a Hadamard matrix of order n. A set of weighing matrices is called mutually unbiased (MU) if every pair of weighing matrices are unbiased.
Mutually unbiased weighing matrices

Definition

A matrix \(W = [w_{ij}] \) of order \(n \) and \(w_{ij} \in \{-1, 0, 1\} \) is called a *weighing matrix with weight* \(p \) if \(WW^t = pl_n \), where \(l_n \) is the identity matrix of order \(n \). A \(W(n, n) \) is a Hadamard matrix of order \(n \).

Two weighing matrices \(W_1, W_2 \) of order \(n \) and weight \(p \) are called *unbiased* if \(W_1 W_2^t = \sqrt{p} W \), where \(W \) is a weighing matrix of order \(n \) and weight \(p \).
Mutually unbiased weighing matrices

Definition
A matrix \(W = [w_{ij}] \) of order \(n \) and \(w_{ij} \in \{-1, 0, 1\} \) is called a **weighing matrix with weight** \(p \) if \(WW^t = pl_n \), where \(l_n \) is the identity matrix of order \(n \). A \(W(n, n) \) is a Hadamard matrix of order \(n \).

Two weighing matrices \(W_1, W_2 \) of order \(n \) and weight \(p \) are called **unbiased** if \(W_1 W_2^t = \sqrt{p} W \), where \(W \) is a weighing matrix of order \(n \) and weight \(p \).

A set of weighing matrices is called **mutually unbiased (MU)** if every pair of weighing matrices are unbiased.
Mutually unbiased weighing matrices

Definition
A matrix \(W = [w_{ij}] \) of order \(n \) and \(w_{ij} \in \{-1, 0, 1\} \) is called a weighing matrix with weight \(p \) if \(WW^t = pl_n \), where \(l_n \) is the identity matrix of order \(n \). A \(W(n, n) \) is a Hadamard matrix of order \(n \).

Two weighing matrices \(W_1, W_2 \) of order \(n \) and weight \(p \) are called unbiased if \(W_1 W_2^t = \sqrt{p} W \), where \(W \) is a weighing matrix of order \(n \) and weight \(p \).

A set of weighing matrices is called mutually unbiased (MU) if every pair of weighing matrices are unbiased.

Any set of MU weighing matrices of order \(n \) and weight \(p \) forms a set of bi-angular lines in \(\mathbb{R}^n \) with \(\alpha = \frac{1}{\sqrt{p}} \).
Theorem: Let m be the number of bi-angular lines in \mathbb{R}^n.

The DGS upper bound

Theorem: Let m' be the number of MU Hadamard matrices of order n.

The two upper bounds differ by one for $n = 4k^2$, the order of a Hadamard matrix ($\alpha = \frac{1}{2}k$).
The DGS upper bound

Theorem: Let m be the number of bi-angular lines in \mathbb{R}^n. Then

$$m \leq \begin{cases} \frac{n(n+2)(1-\alpha^2)}{3-(n+2)\alpha^2} & \text{if } 3-(n+2)\alpha^2 > 0, \\ \frac{n(n+1)(n+2)}{6} & \text{otherwise.} \end{cases}$$
The DGS upper bound

Theorem: Let m be the number of bi-angular lines in \mathbb{R}^n. Then

$$m \leq \begin{cases} \frac{n(n+2)(1-\alpha^2)}{3-(n+2)\alpha^2} & \text{if } 3-(n+2)\alpha^2 > 0, \\ \frac{n(n+1)(n+2)}{6} & \text{otherwise.} \end{cases}$$

Theorem: Let m' be the number of MU Hadamard matrices of order n. Then

$$m' \leq \frac{n}{2}.$$

The two upper bounds differ by one for $n = 4k^2$, the order of a Hadamard matrix ($\alpha = \frac{1}{2k}$).
Bi-angular lines with $\alpha = \frac{1}{2}$ in \mathbb{R}^n
Bi-angular lines with $\alpha = \frac{1}{2}$ in \mathbb{R}^n

Finding bi-angular lines is a challenging problem in general.
Bi-angular lines with $\alpha = \frac{1}{2}$ in \mathbb{R}^n

Finding bi-angular lines is a challenging problem in general.

Let m be the DGS upper bound for $\alpha = \frac{1}{2}$.

Number Found

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>63</td>
</tr>
<tr>
<td>8</td>
<td>120</td>
</tr>
<tr>
<td>9</td>
<td>165</td>
</tr>
</tbody>
</table>
Bi-angular lines with $\alpha = \frac{1}{2}$ in \mathbb{R}^n

Finding bi-angular lines is a challenging problem in general.

Let m be the DGS upper bound for $\alpha = \frac{1}{2}$. Then

$$m = \frac{3n(n+2)}{10-n}$$
Bi-angular lines with $\alpha = \frac{1}{2}$ in \mathbb{R}^n

Finding bi-angular lines is a challenging problem in general.

Let m be the DGS upper bound for $\alpha = \frac{1}{2}$. Then

$$m = \frac{3n(n+2)}{10-n}$$

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>Number Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Bi-angular lines with $\alpha = \frac{1}{2}$ in \mathbb{R}^n

Finding bi-angular lines is a challenging problem in general.

Let m be the DGS upper bound for $\alpha = \frac{1}{2}$. Then

$$m = \frac{3n(n+2)}{10-n}$$

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>Number Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>
Finding bi-angular lines is a challenging problem in general.

Let m be the DGS upper bound for $\alpha = \frac{1}{2}$. Then

$$m = \frac{3n(n + 2)}{10 - n}$$

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>Number Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>20</td>
</tr>
</tbody>
</table>
Bi-angular lines with $\alpha = \frac{1}{2}$ in \mathbb{R}^n

Finding bi-angular lines is a challenging problem in general.

Let m be the DGS upper bound for $\alpha = \frac{1}{2}$. Then

$$m = \frac{3n(n+2)}{10 - n}$$

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>Number Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>30</td>
</tr>
</tbody>
</table>
Bi-angular lines with $\alpha = \frac{1}{2}$ in \mathbb{R}^n

Finding bi-angular lines is a challenging problem in general.

Let m be the DGS upper bound for $\alpha = \frac{1}{2}$. Then

$$m = \frac{3n(n+2)}{10-n}$$

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>Number Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>63</td>
<td>63</td>
</tr>
</tbody>
</table>
Bi-angular lines with $\alpha = \frac{1}{2}$ in \mathbb{R}^n

Finding bi-angular lines is a challenging problem in general.

Let m be the DGS upper bound for $\alpha = \frac{1}{2}$. Then

$$m = \frac{3n(n+2)}{10-n}$$

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>Number Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>8</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>
Bi-angular lines with $\alpha = \frac{1}{2}$ in \mathbb{R}^n

Finding bi-angular lines is a challenging problem in general.

Let m be the DGS upper bound for $\alpha = \frac{1}{2}$. Then

$$m = \frac{3n(n+2)}{10-n}$$

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>Number Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>8</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>9</td>
<td>165</td>
<td>120</td>
</tr>
</tbody>
</table>
Mutually unbiased $W(n, p)$ with $\alpha = \frac{1}{2}$ in \mathbb{R}^n

<table>
<thead>
<tr>
<th>Type</th>
<th>DGS UB</th>
<th>Number Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W(4,4)$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$W(6,4)$</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>$W(7,4)$</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>$W(8,4)$</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>
Mutually unbiased $W(n, p)$ with $\alpha = \frac{1}{2}$ in \mathbb{R}^n

<table>
<thead>
<tr>
<th>Type</th>
<th>DGS UB</th>
<th>Number Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W(4,4)$</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Mutually unbiased $W(n, p)$ with $\alpha = \frac{1}{2}$ in \mathbb{R}^n

<table>
<thead>
<tr>
<th>Type</th>
<th>DGS UB</th>
<th>Number Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W(4,4)$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$W(6,4)$</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
Mutually unbiased $W(n,p)$ with $\alpha = \frac{1}{2}$ in \mathbb{R}^n

<table>
<thead>
<tr>
<th>Type</th>
<th>DGS UB</th>
<th>Number Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W(4,4)$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$W(6,4)$</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>$W(7,4)$</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Mutually unbiased $W(n, p)$ with $\alpha = \frac{1}{2}$ in \mathbb{R}^n

<table>
<thead>
<tr>
<th>Type</th>
<th>DGS UB</th>
<th>Number Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W(4,4)$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$W(6,4)$</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>$W(7,4)$</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>$W(8,4)$</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>
Motivation

The identity matrix is unbiased with the 14 \(\text{MUW}_8\) W's.

The perpendicularity graph of the Gram matrix of the 120 vectors is the adjacency matrix of an SRG(120, 63, 36, 30). The vertices are a disjoint union of 15 cliques of size 8, forming the point line graph of a \(\text{pg}(7, 8, 4)\) having an automorphism group of size 348,364,800; and may be the same \(\text{pg}\) found by Cohen in 1981.

The identity matrix is unbiased with the 8 \(\text{MUW}_7\) W's.

The perpendicularity graph of the Gram matrix of the 63 vectors is an SRG(63, 30, 13, 15). The vertices are disjoint union of 9 cliques of size 7. The graph is isomorphic to the classical design having as blocks the hyperplanes in \(\text{PG}(5, 2)\).
Motivation

The identity matrix is unbiased with the 14 MUW $W(8, 4)$’s.

The perpendicularity graph of the Gram matrix of the 63 vectors is an SRG(63,30,13,15). The vertices are disjoint union of 9 cliques of size 7. The graph is isomorphic to the classical design having as blocks the hyperplanes in PG(5,2).
Motivation

The identity matrix is unbiased with the 14 MUW $W(8, 4)$’s. The perpendicularly graph of the Gram matrix of the 120 vectors

The identity matrix is unbiased with the 8 MUW $W(7, 4)$’s. The perpendicularly graph of the Gram matrix of the 63 vectors is an SRG($63, 30, 13, 15$). The vertices are disjoint union of 9 cliques of size 7. The graph is isomorphic to the classical design having as blocks the hyperplanes in PG(5,2).
Motivation

The identity matrix is unbiased with the 14 MUW $W(8,4)$’s. The perpendicularly graph of the Gram matrix of the 120 vectors is the adjacency matrix of an $SRG(120,63,36,30)$. The identity matrix is unbiased with the 8 MUW $W(7,4)$’s. The perpendicularly graph of the Gram matrix of the 63 vectors is an $SRG(63,30,13,15)$. The vertices are a disjoint union of 9 cliques of size 7. The graph is isomorphic to the classical design having as blocks the hyperplanes in $PG(5,2)$.
Motivation

The identity matrix is unbiased with the 14 MUW $W(8,4)$’s. The perpendicularly graph of the Gram matrix of the 120 vectors is the adjacency matrix of an $SRG(120,63,36,30)$, The vertices are a disjoint union of 15 cliques of size 8,
The identity matrix is unbiased with the 14 MUW $W(8, 4)$’s. The perpendicularly graph of the Gram matrix of the 120 vectors is the adjacency matrix of an $SRG(120, 63, 36, 30)$. The vertices are a disjoint union of 15 cliques of size 8, forming the point line graph of a $pg(7, 8, 4)$.
Motivation

The identity matrix is unbiased with the 14 MUW $W(8, 4)$’s. The perpendicularity graph of the Gram matrix of the 120 vectors is the adjacency matrix of an $SRG(120, 63, 36, 30)$. The vertices are a disjoint union of 15 cliques of size 8, forming the point line graph of a $pg(7, 8, 4)$ having an automorphism group of size 348,364,800;
Motivation

The identity matrix is unbiased with the 14 MUW $W(8, 4)$’s. The perpendicularly graph of the Gram matrix of the 120 vectors is the adjacency matrix of an $SRG(120, 63, 36, 30)$. The vertices are a disjoint union of 15 cliques of size 8, forming the point line graph of a $pg(7, 8, 4)$ having an automorphism group of size $348,364,800$; and may be the same pg found by Cohen in 1981.
Motivation

The identity matrix is unbiased with the 14 MUW $W(8,4)$’s. The perpendicularity graph of the Gram matrix of the 120 vectors is the adjacency matrix of an $SRG(120,63,36,30)$. The vertices are a disjoint union of 15 cliques of size 8, forming the point line graph of a $pg(7,8,4)$ having an automorphism group of size 348,364,800; and may be the same pg found by Cohen in 1981.

The identity matrix is unbiased with the 8 MUW $W(7,4)$’s.
Motivation

The identity matrix is unbiased with the 14 MUW $W(8, 4)$’s. The perpendicularly graph of the Gram matrix of the 120 vectors is the adjacency matrix of an $SRG(120, 63, 36, 30)$. The vertices are a disjoint union of 15 cliques of size 8, forming the point line graph of a $pg(7, 8, 4)$ having an automorphism group of size 348,364,800; and may be the same pg found by Cohen in 1981.

The identity matrix is unbiased with the 8 MUW $W(7, 4)$’s. The perpendicularly graph of the Gram matrix of the 63 vectors is an $SRG(63, 30, 13, 15)$.
Motivation

The identity matrix is unbiased with the 14 MUW $W(8,4)$’s. The perpendicularity graph of the Gram matrix of the 120 vectors is the adjacency matrix of an $SRG(120,63,36,30)$. The vertices are a disjoint union of 15 cliques of size 8, forming the point line graph of a $pg(7,8,4)$ having an automorphism group of size 348,364,800; and may be the same pg found by Cohen in 1981.

The identity matrix is unbiased with the 8 MUW $W(7,4)$’s. The perpendicularity graph of the Gram matrix of the 63 vectors is an $SRG(63,30,13,15)$. The vertices are disjoint union of 9 cliques of size 7.
Motivation

The identity matrix is unbiased with the 14 MUW $W(8,4)$’s. The perpendicularly graph of the Gram matrix of the 120 vectors is the adjacency matrix of an $SRG(120,63,36,30)$. The vertices are a disjoint union of 15 cliques of size 8, forming the point line graph of a $pg(7,8,4)$ having an automorphism group of size 348,364,800; and may be the same pg found by Cohen in 1981.

The identity matrix is unbiased with the 8 MUW $W(7,4)$’s. The perpendicularly graph of the Gram matrix of the 63 vectors is an $SRG(63,30,13,15)$. The vertices are disjoint union of 9 cliques of size 7. The graph is isomorphic to the classical design having as blocks the hyperplanes in $PG(5,2)$.
Mutually suitable Latin squares

Two Latin squares L_1 and L_2 of size n on symbol set \{0, 1, 2, ..., $n-1$\} are called suitable if every superimposition of each row of L_1 on each row of L_2 results in only one element of the form (a, a).

MSLS (Mutually Suitable Latin Squares) of size n is a special form of MOLS (Mutually Orthogonal Latin Squares) of size n.

There are $p-1$ MSLS of size p for each prime power p.
Mutually suitable Latin squares

Two Latin squares L_1 and L_2 of size n on symbol set \{0, 1, 2, \ldots, n - 1\} are called **suitable** if every superimposition of each row of L_1 on each row of L_2 results in only one element of the form (a, a).

MSLS (Mutually Suitable Latin Squares) of size n is a special form of MOLS (Mutually Orthogonal Latin Squares) of size n.
Mutually suitable Latin squares

Two Latin squares L_1 and L_2 of size n on symbol set \(\{0, 1, 2, \ldots, n-1\} \) are called \textit{suitable} if every superimposition of each row of L_1 on each row of L_2 results in only one element of the form \((a, a)\).

MSLS (Mutually Suitable Latin Squares) of size n is a special form of MOLS (Mutually Orthogonal Latin Squares) of size n.
Mutually suitable Latin squares

Two Latin squares L_1 and L_2 of size n on symbol set $\{0, 1, 2, \ldots, n - 1\}$ are called \textit{suitable} if every superimposition of each row of L_1 on each row of L_2 results in only one element of the form (a, a).

MSLS (Mutually Suitable Latin Squares) of size n is a special form of MOLS (Mutually Orthogonal Latin Squares) of size n.

There are $p - 1$ MSLS of size p for each prime power p.

The auxiliary matrices corresponding to weighing matrices

Theorem

There is a weighing matrix $W(n, p)$ if and only if there are n auxiliary $(0, \pm 1)$-matrices $C_0, C_1, C_2, \ldots, C_{n-1}$ of order n such that:

$C^*i = C_i$

$C_i C^*_j = 0, i \neq j$

$C^*_2 i = pC_i$

$C_0 + C_1 + C_2 + \cdots + C_{n-1} = p^2 I_n$

Proof.

Let r_i be the $(i+1)$-th row of W and $C_i = r_t r_i, i = 0, 1, \ldots, n-1$.
The auxiliary matrices corresponding to weighing matrices

Theorem

There is a weighing matrix $W(n, p)$ of order n and weight p if and only if there are n auxiliary $(0, \pm 1)$-matrices $C_0, C_1, C_2, \ldots, C_{n-1}$ of order n such that:

- $C_i^* = C_i$
The auxiliary matrices corresponding to weighing matrices

Theorem

There is a weighing matrix $W(n, p)$ of order n and weight p if and only if there are n auxiliary $(0, \pm 1)$-matrices $C_0, C_1, C_2, \ldots, C_{n-1}$ of order n such that:

- $C_i^* = C_i$
- $C_i C_j^* = 0$, $i \neq j$
The auxiliary matrices corresponding to weighing matrices

Theorem

There is a weighing matrix \(W(n, p) \) of order \(n \) and weight \(p \) if and only if there are \(n \) auxiliary \((0, \pm 1)\)-matrices \(C_0, C_1, C_2, \ldots, C_{n-1} \) of order \(n \) such that:

- \(C_i^* = C_i \)
- \(C_i C_j^* = 0 \), \(i \neq j \)
- \(C_i^2 = pC_i \)

Proof.

Let \(r_i \) be the \(i+1 \)-th row of \(W \) and let \(C_i = r_i^t r_i \), \(i = 0, 1, \ldots, n-1 \).
The auxiliary matrices corresponding to weighing matrices

Theorem

There is a weighing matrix $W(n, p)$ of order n and weight p if and only if there are n auxiliary $(0, \pm 1)$-matrices $C_0, C_1, C_2, \ldots, C_{n-1}$ of order n such that:

- $C_i^* = C_i$
- $C_i C_j^* = 0, i \neq j$
- $C_i^2 = pC_i$
- $C_0 + C_1 + C_2 + \cdots + C_{n-1} = p^2 I_n$
The auxiliary matrices corresponding to weighing matrices

Theorem

There is a weighing matrix $W(n, p)$ of order n and weight p if and only if there are n auxiliary $(0, \pm 1)$-matrices $C_0, C_1, C_2, \ldots, C_{n-1}$ of order n such that:

- $C_i^* = C_i$
- $C_i C_j^* = 0, \ i \neq j$
- $C_i^2 = pC_i$
- $C_0 + C_1 + C_2 + \cdots + C_{n-1} = p^2 I_n$

Proof.
The auxiliary matrices corresponding to weighing matrices

Theorem
There is a weighing matrix $W(n, p)$ if and only if there are n auxiliary $(0, \pm 1)$-matrices $C_0, C_1, C_2, \ldots, C_{n-1}$ of order n such that:

- $C_i^* = C_i$
- $C_iC_j^* = 0, \ i \neq j$
- $C_i^2 = pC_i$
- $C_0 + C_1 + C_2 + \cdots + C_{n-1} = p^2 I_n$

Proof.
Let r_i be the $i + 1$-th row of W and let $C_i = r_i^t r_i, \ i = 0, 1, \ldots, n - 1$. \[\square \]
MU weighing matrices from orthogonal blocks

Starting with a $W(n,p)$, we do the following:

▶ Construct the n auxiliary matrices $C_0, C_1, C_2, \ldots, C_{n-1}$.

▶ Let L_1, L_2, \ldots, L_q be a set of MSLS on the set $\{0, 1, 2, \ldots, m-1\}$, $m \geq n$.

▶ Replace each integer i in L_j with C_i, $i = 0, 1, 2, \ldots, n-1$, and the rest of the entries with all 0-blocks of order n.

Lemma: If there is a $W(n,p)$ and q MSLS of size m, $m \geq n$. Then there are q mutually unbiased weighing matrices (MUWM), $W(nm,p^2)$.
MU weighing matrices from orthogonal blocks

Starting with a \(W(n, p) \) we do the following:
MU weighing matrices from orthogonal blocks

Starting with a $W(n, p)$ we do the following:

- Construct the n auxiliary matrices $C_0, C_1, C_2, \ldots, C_{n-1}$.

Lemma: If there is a $W(n, p)$ and q MSLS of size m, $m \geq n$. Then there are q mutually unbiased weighing matrices (MUWM), $W(nm, p^2)$.
MU weighing matrices from orthogonal blocks

Starting with a $W(n, p)$ we do the following:

- Construct the n auxiliary matrices $C_0, C_1, C_2, \ldots, C_{n-1}$.
- Let L_1, L_2, \ldots, L_q be a set of MSLS on the set $\{0, 1, 2, \ldots, m-1\}$, $m \geq n$.

Lemma: If there is a $W(n, p)$ and q MSLS of size m, $m \geq n$. Then there are q mutually unbiased weighing matrices (MUWM), $W(\frac{nm}{2}, p^2)$.
MU weighing matrices from orthogonal blocks

Starting with a $W(n, p)$ we do the following:

- Construct the n auxiliary matrices $C_0, C_1, C_2, \ldots, C_{n-1}$.
- Let L_1, L_2, \ldots, L_q be a set of MSLS on the set $\{0, 1, 2, \ldots, m-1\}$, $m \geq n$.
- Replace each integer i in L_j with C_i, $i = 0, 1, 2, \ldots, n-1$, $j = 1, 2, \ldots, q$, and the rest of the entries with all 0-blocks of order n.

Lemma: If there is a $W(n, p)$ and q MSLS of size m, $m \geq n$. Then there are q mutually unbiased weighing matrices (MUWM), $W(nm, p^2)$.

MU weighing matrices from orthogonal blocks

Starting with a $W(n, p)$ we do the following:

- Construct the n auxiliary matrices $C_0, C_1, C_2, \ldots, C_{n-1}$.
- Let L_1, L_2, \ldots, L_q be a set of MSLS on the set \{0, 1, 2, \ldots, m - 1\}, $m \geq n$.
- Replace each integer i in L_j with C_i, $i = 0, 1, 2, \ldots, n - 1$, $j = 1, 2, \ldots, q$, and the rest of the entries with all 0-blocks of order n.

Lemma: If there is a $W(n, p)$ and q MSLS of size m, $m \geq n$. Then there are q mutually unbiased weighing matrices (MUWM), $W(nm, p^2)$.
An example of MU weighing matrices

Let \(W = \begin{bmatrix}
0 & 1 & 1 & 1 \\
-1 & 0 & 1 & -1 \\
-1 & -1 & 0 & 1 \\
-1 & -1 & -1 & 0
\end{bmatrix} \).

\(C_0 =
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{bmatrix}, \)

\(C_1 =
\begin{bmatrix}
1 & 0 & -1 & 0 \\
-1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
1 & -1 & -1 & 0
\end{bmatrix}, \)

\(C_2 =
\begin{bmatrix}
1 & 1 & 0 & 1 \\
-1 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
-1 & -1 & 1 & 0
\end{bmatrix}, \)

\(C_3 =
\begin{bmatrix}
1 & -1 & 1 & 0 \\
-1 & 1 & 0 & -1 \\
-1 & 1 & 0 & 1 \\
1 & -1 & 1 & 0
\end{bmatrix}. \)
An example of MU weighing matrices

Let $W = \begin{pmatrix}
0 & 1 & 1 & 1 \\
-0 & 1 & - & - \\
- & - & 0 & 1 \\
-1 & - & 0 & 0
\end{pmatrix}$.
An example of MU weighing matrices

Let $W = \begin{pmatrix}
0 & 1 & 1 & 1 \\
- & 0 & 1 & - \\
- & - & 0 & 1 \\
- & 1 & - & 0
\end{pmatrix}$.

$C_0 = r_0^t r_0 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{pmatrix}$, \hspace{1cm} $C_1 = r_1^t r_1 = \begin{pmatrix}
1 & 0 & - & 1 \\
0 & 0 & 0 & 0 \\
- & 0 & 1 & - \\
1 & 0 & - & 1
\end{pmatrix}$,

$C_2 = r_2^t r_2 = \begin{pmatrix}
1 & 1 & 0 & - \\
1 & 1 & 0 & - \\
0 & 0 & 0 & 0 \\
- & - & 0 & 1
\end{pmatrix}$, \hspace{1cm} $C_3 = r_3^t r_3 = \begin{pmatrix}
1 & - & 1 & 0 \\
- & 1 & - & 0 \\
1 & - & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$.
\[W_1 = \begin{pmatrix} C_0 & C_3 & C_1 & 0 & C_2 \\ C_2 & C_0 & C_3 & C_1 & 0 \\ 0 & C_2 & C_0 & C_3 & C_1 \\ C_1 & 0 & C_2 & C_0 & C_3 \\ C_3 & C_1 & 0 & C_2 & C_0 \end{pmatrix} \quad W_2 = \begin{pmatrix} C_0 & C_1 & C_2 & C_3 & 0 \\ 0 & C_0 & C_1 & C_2 & C_3 \\ C_3 & 0 & C_0 & C_1 & C_2 \\ C_2 & C_3 & 0 & C_0 & C_1 \\ C_1 & C_2 & C_3 & 0 & C_0 \end{pmatrix}, \]

\[W_3 = \begin{pmatrix} C_0 & C_2 & 0 & C_1 & C_3 \\ C_3 & C_0 & C_2 & 0 & C_1 \\ C_1 & C_3 & C_0 & C_2 & 0 \\ 0 & C_1 & C_3 & C_0 & C_2 \\ C_2 & 0 & C_1 & C_3 & C_0 \end{pmatrix}, \]

\[W_4 = \begin{pmatrix} C_0 & 0 & C_3 & C_2 & C_1 \\ C_1 & C_0 & 0 & C_3 & C_2 \\ C_2 & C_1 & C_0 & 0 & C_3 \\ C_3 & C_2 & C_1 & C_0 & 0 \\ 0 & C_3 & C_2 & C_1 & C_0 \end{pmatrix}. \]

\(W_1, W_2, W_3, W_4 \) form a set of four MUWM of order 20 and weight 9.
Biangular lines from orthogonal segments

Starting with a $W(n, n)$ we do the following:

- Construct the n auxiliary matrices $C_0, C_1, C_2, \ldots, C_{n-1}$.

- Let L_1, L_2, \ldots, L_q be a set of MSLS on the set $\{0, 1, 2, \ldots, m-1\}$, $m \geq n-1$.

- Replace each integer i in L_j with C_i, $i = 1, 2, \ldots, n-1$, and the rest of the entries with all 0-blocks of order n.

Lemma: If there is a $W(n, n)$ and q MSLS of size m on the set $\{0, 1, 2, \ldots, m-1\}$, $m \geq n-1$. Then there are mnq biangular lines in \mathbb{R}^{mn}.
Biangular lines from orthogonal segments

Starting with a $\mathcal{W}(n, n)$ we do the following:

1. Construct the n auxiliary matrices $C_0, C_1, C_2, \ldots, C_{n-1}$.
2. Let L_1, L_2, \ldots, L_q be a set of MSLS on the set \{0, 1, 2, \ldots, m-1\}, $m \geq n-1$.
3. Replace each integer i in L_j with C_i, $i = 1, 2, \ldots, n-1$, and the rest of the entries with all 0-blocks of order n.

Lemma: If there is a $\mathcal{W}(n, n)$ and q MSLS of size m on the set \{0, 1, 2, \ldots, m-1\}, $m \geq n-1$. Then there are mnq biangular lines in \mathbb{R}^{mn}.

Biangular lines from orthogonal segments

Starting with a $W(n, n)$ we do the following:

- Construct the n auxiliary matrices $C_0, C_1, C_2, \ldots, C_{n-1}$.
Biangular lines from orthogonal segments

Starting with a $W(n, n)$ we do the following:

- Construct the n auxiliary matrices $C_0, C_1, C_2, \ldots, C_{n-1}$.
- Let L_1, L_2, \ldots, L_q be a set of MSLS on the set $\{0, 1, 2, \ldots, m-1\}$, $m \geq n - 1$.

Lemma: If there is a $W(n, n)$ and q MSLS of size m on the set $\{0, 1, 2, \ldots, m-1\}$, $m \geq n - 1$. Then there are mnq biangular lines in \mathbb{R}^{mn}.
Biangular lines from orthogonal segments

Starting with a $W(n, n)$ we do the following:

- Construct the n auxiliary matrices $C_0, C_1, C_2, \ldots, C_{n-1}$.
- Let L_1, L_2, \ldots, L_q be a set of MSLS on the set $\{0, 1, 2, \ldots, m-1\}$, $m \geq n - 1$.
- Replace each integer i in L_j with C_i, $i = 1, \ldots, n-1$, $j = 1, 2, \ldots, q$, and the rest of the entries with all 0-blocks of order n.

Lemma: If there is a $W(n, n)$ and q MSLS of size m on the set $\{0, 1, 2, \ldots, m-1\}$, $m \geq n - 1$. Then there are mnq biangular lines in \mathbb{R}^{mn}.
Biangular lines from orthogonal segments

Starting with a $W(n, n)$ we do the following:

- Construct the n auxiliary matrices $C_0, C_1, C_2, \ldots, C_{n-1}$.
- Let L_1, L_2, \ldots, L_q be a set of MSLS on the set $\{0, 1, 2, \ldots, m-1\}$, $m \geq n-1$.
- Replace each integer i in L_j with C_i, $i = 1, \ldots, n-1$, $j = 1, 2, \ldots, q$, and the rest of the entries with all 0-blocks of order n.

Lemma: If there is a $W(n, n)$ and q MSLS of size m on the set $\{0, 1, 2, \ldots, m-1\}$, $m \geq n-1$. Then there are mnq biangular lines in \mathbb{R}^{mn}.
Biangular lines and association schemes

We have a number of examples where the Gram matrix of biangular lines form 3, 4, 5 and 6-association schemes.

For example:

▶ From a Hadamard matrix of order 4 and the first construction, we have a 5-association schemes on 64 points that collapses to an SRG.

▶ Next page for more association schemes.
We have a number of examples where the Gram matrix of biangular lines form 3,4,5 and 6-association schemes.
Biangular lines and association schemes

We have a number of examples where the Gram matrix of biangular lines form 3,4,5 and 6-association schemes.

For example:

▶ From a Hadamard matrix of order 4 and the first construction, we have a 5-association schemes on 64 points that collapses to an SRG.
Biangular lines and association schemes

We have a number of examples where the Gram matrix of biangular lines form 3, 4, 5 and 6-association schemes.

For example:

▶ From a Hadamard matrix of order 4 and the first construction, we have a 5-association schemes on 64 points that collapses to an SRG.

▶ Next page for more association schemes.
From this construction, we were able to use small orders of Hadamard matrices and MSLS to generate large 6-association schemes.

\[\mathcal{H}_{12} \oplus \text{MSLS}(11) \rightarrow \text{AS}(1452; 600, 600, 120, 120, 6, 5) \]

\[\mathcal{H}_{20} \oplus \text{MSLS}(19) \rightarrow \text{AS}(7220; 3240, 3240, 360, 360, 10, 9) \]
From this construction, we were able to use small orders of Hadamard matrices and MSLS to generate large 6-association schemes.

\[H_{12} + \text{MSLS}(11) \rightarrow \text{AS}(1452; 600, 600, 120, 120, 6, 5) \]

\[H_{20} + \text{MSLS}(19) \rightarrow \text{AS}(7220; 3240, 3240, 360, 360, 10, 9) \]
From this construction, we were able to use small orders of Hadamard matrices and MSLS to generate large 6-association schemes.

\[H_{12} + \text{MSLS}(11) \rightarrow \text{AS}(1452; 600, 600, 120, 120, 6, 5) \]

\[H_{20} + \text{MSLS}(19) \rightarrow \text{AS}(7220; 3240, 3240, 360, 360, 10, 9) \]

(... Details Omitted ...)
From this construction, we were able to use small orders of Hadamard matrices and MSLS to generate large 6-association schemes.
From this construction, we were able to use small orders of Hadamard matrices and MSLS to generate large 6-association schemes.

- $H_{12} + MSLS(11)$
(... Details Omitted ...)

From this construction, we were able to use small orders of Hadamard matrices and MSLS to generate large 6-association schemes.

\[H_{12} + MSLS(11) \rightarrow AS(1452; 600, 600, 120, 120, 6, 5) \]
From this construction, we were able to use small orders of Hadamard matrices and MSLS to generate large 6-association schemes.

- $H_{12} + \text{MSLS}(11) \rightarrow AS(1452; 600, 600, 120, 120, 6, 5)$
- $H_{20} + \text{MSLS}(19)$
From this construction, we were able to use small orders of Hadamard matrices and MSLS to generate large 6-association schemes.

- $H_{12} + \text{MSLS}(11) \rightarrow \text{AS}(1452; 600, 600, 120, 120, 6, 5)$
- $H_{20} + \text{MSLS}(19) \rightarrow \text{AS}(7220; 3240, 3240, 360, 360, 10, 9)$
More applications of biangular lines
More applications of biangular lines

The existence of a specific class of MUWM is equivalent to the existence of MOLS:

There are \(m \) MU Hadamard matrices of order \(4n^2 \) constructible from \(2n \) symmetric orthogonal blocks of size \(2n \) if and only if there are \(m \) MOLS of size \(2n \).

There is a natural connection between biangular lines and certain classes of codes. Biangular lines lead to codes with constant weights and designated distances. For example, MU Hadamard matrices of order \(4n^2 \) can be used to generate Kerdock codes. However, in practice the reverse is done!
More applications of biangular lines

The existence of a specific class of MUWM is equivalent to the existence of MOLS:

There are m MU Hadamard matrices of order $4n^2$

However, in practice the reverse is done!
More applications of biangular lines

The existence of a specific class of MUWM is equivalent to the existence of MOLS:

There are \(m \) MU Hadamard matrices of order \(4n^2 \) constructible from \(2n \) symmetric orthogonal blocks of size \(2n \).
More applications of biangular lines

The existence of a specific class of MUWM is equivalent to the existence of MOLS:

There are m MU Hadamard matrices of order $4n^2$ constructible from $2n$ symmetric orthogonal blocks of size $2n$ if and only if there are m MOLS of size $2n$.
More applications of biangular lines

The existence of a specific class of MUWM is equivalent to the existence of MOLS:

There are \(m \) MU Hadamard matrices of order \(4n^2 \) constructible from \(2n \) symmetric orthogonal blocks of size \(2n \) if and only if there are \(m \) MOLS of size \(2n \).

There is a natural connection between biangular lines and certain classes of codes.
More applications of biangular lines

The existence of a specific class of MUWM is equivalent to the existence of MOLS:

There are m MU Hadamard matrices of order $4n^2$ constructible from $2n$ symmetric orthogonal blocks of size $2n$ if and only if there are m MOLS of size $2n$.

There is a natural connection between biangular lines and certain classes of codes. Biangular lines lead to codes with constant weights and designated distances.
More applications of biangular lines

The existence of a specific class of MUWM is equivalent to the existence of MOLS:

There are m MU Hadamard matrices of order $4n^2$ constructible from $2n$ symmetric orthogonal blocks of size $2n$ if and only if there are m MOLS of size $2n$.

There is a natural connection between biangular lines and certain classes of codes. Biangular lines lead to codes with constant weights and designated distances.

For example, MU Hadamard matrices of order 4^n can be used to generate Kerdock codes.
The existence of a specific class of MUWM is equivalent to the existence of MOLS:

There are \(m \) MU Hadamard matrices of order \(4n^2 \) constructible from \(2n \) symmetric orthogonal blocks of size \(2n \) if and only if there are \(m \) MOLS of size \(2n \).

There is a natural connection between biangular lines and certain classes of codes. Biangular lines lead to codes with constant weights and designated distances.

For example, MU Hadamard matrices of order \(4^n \) can be used to generate Kerdock codes. However, in practice the reverse is done!
Some open questions

▶ Find an upper bound for the number of flat biangular lines in \mathbb{R}^n.

▶ Show that there are 36 biangular lines in \mathbb{R}^6, with $\alpha = \frac{1}{2}$.

▶ Find a direct construction for the $2^{2n} \mu$ Hadamard matrices of order $2^{2n} - 1$.

▶ Show that there are 128 MU Hadamard matrices of order 128 with $\alpha \in \{0, -16, 16\}$.

BCH codes of length 128 and distance in $\{56, 64, 72\}$ may be of help.
Some open questions

- Find an upper bound for the number of \textit{flat} biangular lines in \mathbb{R}^n.
Some open questions

- Find an upper bound for the number of flat biangular lines in \mathbb{R}^n.
- Show that there are 36 biangular lines in \mathbb{R}^6, with $\alpha = 1/2$.
Some open questions

- Find an upper bound for the number of flat biangular lines in \mathbb{R}^n.
- Show that there are 36 biangular lines in \mathbb{R}^6, with $\alpha = 1/2$.
- Find a direct construction for the 2^{2n} MU Hadamard matrices of order 2^{2n-1}.
Some open questions

- Find an upper bound for the number of flat biangular lines in \mathbb{R}^n.
- Show that there are 36 biangular lines in \mathbb{R}^6, with $\alpha = 1/2$.
- Find a direct construction for the 2^{2n} MU Hadamard matrices of order 2^{2n-1}.
- Show that there are 128 MU Hadamard matrices of order 128 with $\alpha \in \{0, -16, 16\}$.

BCH codes of length 128 and distance in $\{56, 64, 72\}$ may be of help.
Some open questions

- Find an upper bound for the number of flat biangular lines in \mathbb{R}^n.
- Show that there are 36 biangular lines in \mathbb{R}^6, with $\alpha = 1/2$.
- Find a direct construction for the 2^{2n} MU Hadamard matrices of order 2^{2n-1}.
- Show that there are 128 MU Hadamard matrices of order 128 with $\alpha \in \{0, -16, 16\}$. BCH codes of length 128 and distance in $\{56, 64, 72\}$ may be of help.
Thank you organizers!
Thank you organizers!

Thank you Ian!