Perfect 1-Factorisations of Circulant Graphs of Degree 4

Sarada Herke

PhD Supervisor: Dr. Barbara Maenhaut

The University of Queensland

June 2013
OUTLINE

- definitions and history
- what does bipartite have to do with it?
- our results
- future research
Basic Definitions

A 1-factor of a graph G is a spanning 1-regular subgraph of G.

A 1-factorisation of a graph G is a partition of the edges of G into 1-factors.

A 1-factorisation is perfect if the union of every pair of distinct 1-factors forms a Hamilton cycle.

The above 1-factorisation is not a P1F.
A 1-factor of a graph G is a spanning 1-regular subgraph of G. A 1-factorisation of a graph G is a partition of the edges of G into 1-factors. A 1-factorisation is perfect if the union of every pair of distinct 1-factors forms a Hamilton cycle. The above 1-factorisation is not a P1F.
A 1-factor of a graph G is a spanning 1-regular subgraph of G. A 1-factorisation of a graph G is a partition of the edges of G into 1-factors. A 1-factorisation is perfect if the union of every pair of distinct 1-factors forms a Hamilton cycle.
A **1-factor** of a graph G is a spanning 1-regular subgraph of G.

A **1-factorisation** of a graph G is a partition of the edges of G into 1-factors.

A 1-factorisation is perfect if the union of every pair of distinct 1-factors forms a Hamilton cycle.
Basic Definitions

- A 1-factor of a graph G is a spanning 1-regular subgraph of G.
- A 1-factorisation of a graph G is a partition of the edges of G into 1-factors.
Basic Definitions

- A **1-factor** of a graph G is a spanning 1-regular subgraph of G.
- A **1-factorisation** of a graph G is a partition of the edges of G into 1-factors.
- A 1-factorisation is **perfect** if the union of every pair of distinct 1-factors forms a Hamilton cycle.
Basic Definitions

- A 1-factor of a graph G is a spanning 1-regular subgraph of G.
- A 1-factorisation of a graph G is a partition of the edges of G into 1-factors.
- A 1-factorisation is perfect if the union of every pair of distinct 1-factors forms a Hamilton cycle.
- The above 1-factorisation is not a P1F.
Consider K_6:

![Graph of K_6]
Example:

Consider K_6:

Sarada Herke (UQ)
P1Fs of Circulants
June 2013
4 / 18
Example:

Consider K_6:

![Graph Image]
Example:

Consider K_6:

![Graph](image)
Consider K_6:
EXAMPLE:

Consider K_6:
Conjecture (Kotzig, ’64)

The complete graph K_{2n} admits a P1F for all $n \geq 2$.
Conjecture for Complete Graphs

Conjecture (Kotzig, ’64)
The complete graph K_{2n} admits a P1F for all $n \geq 2$.

- proven when n is an odd prime
Conjecture (Kotzig, ’64)

The complete graph K_{2n} admits a P1F for all $n \geq 2$.

- proven when n is an odd prime
- proven when $2n - 1$ is an odd prime
Conjecture for Complete Graphs

Conjecture (Kotzig, ’64)

The complete graph K_{2n} admits a P1F for all $n \geq 2$.

- proven when n is an odd prime
- proven when $2n - 1$ is an odd prime
- small values (upto K_{52}) and other sporadic values
Suppose \(n \) is even and \(S \subseteq \{1, 2, \ldots, \frac{n}{2}\} \).

The circulant graph on \(n \) vertices with connection set \(S \), denoted \(\text{Circ}(n, S) \), has vertex set \(V = \{0, 1, \ldots, n - 1\} \) and edge set
\[
E = \{\{x, x + s \pmod{n}\} \mid x \in V, s \in S\}.
\]

Example: \(\text{Circ}(10, \{1, 2, 5\}) \)
Suppose n is even and $S \subseteq \{1, 2, \ldots, \frac{n}{2}\}$.

The circulant graph on n vertices with connection set S, denoted $\text{Circ}(n, S)$, has vertex set $V = \{0, 1, \ldots, n - 1\}$ and edge set $E = \{\{x, x + s \pmod{n}\} \mid x \in V, s \in S\}$.

Example: $\text{Circ}(10, \{1, 2, \ldots\})$
Suppose n is even and $S \subseteq \{1, 2, \ldots, \frac{n}{2}\}$.

The circulant graph on n vertices with connection set S, denoted $\text{Circ}(n, S)$, has vertex set $V = \{0, 1, \ldots, n - 1\}$ and edge set $E = \{\{x, x + s \pmod{n}\} \mid x \in V, s \in S\}$.

Example: $\text{Circ}(10, \{1, 2, 5\})$

A 4-regular circulant has $S = \{a, b\}$ where $1 \leq a < b < \frac{n}{2}$.
Theorem (Stong, ’85)

A connected Cayley graph on a finite Abelian group of even order has a 1-factorisation.
Theorem (Stong, ’85)

A connected Cayley graph on a finite Abelian group of even order has a 1-factorisation.

Theorem (Bermond, Favaron, Maheo, ’89)

A 4-regular connected Cayley graph on a finite Abelian group can be decomposed into two Hamilton cycles.
Theorem (Stong, ’85)

A connected Cayley graph on a finite Abelian group of even order has a 1-factorisation.

Theorem (Bermond, Favaron, Maheo, ’89)

A 4-regular connected Cayley graph on a finite Abelian group can be decomposed into two Hamilton cycles.

Problem

Characterise the circulant graphs that admit a P1F.
Bipartite Case

Theorem (Kotzig, ’64)

If G is a bipartite r-regular graph with $r > 2$ and G admits a P1F, then $|V(G)| \equiv 2 \pmod{4}$.

Proof (idea): Suppose $|V(G)| = 2n$ where n is even and there is a P1F F_1, F_2, \ldots, F_r. Example: $n = 4$

$\sigma - 1_j \sigma_i$ is an odd permutation $\Rightarrow \sigma_i, \sigma_j$ have different parities

This holds for all pairs i, j $\Rightarrow r \leq 2$ ($\Rightarrow \Leftarrow$) \square
Theorem (Kotzig, ’64)

If G is a bipartite r-regular graph with $r > 2$ and G admits a P1F, then $|V(G)| \equiv 2 \pmod{4}$.

Proof (idea): Suppose $|V(G)| = 2n$ where n is even and there is a P1F F_1, F_2, \ldots, F_r. Example: $n = 4$
Theorem (Kotzig, ’64)

If G is a bipartite r-regular graph with $r > 2$ and G admits a P1F, then $|V(G)| \equiv 2 \pmod{4}$.

Proof (idea): Suppose $|V(G)| = 2n$ where n is even and there is a P1F F_1, F_2, \ldots, F_r. Example: $n = 4$

\[a_1 \rightarrow b_1 \]
\[a_2 \rightarrow b_2 \]
\[a_3 \rightarrow b_3 \]
\[a_4 \rightarrow b_4 \]
Theorem (Kotzig, ’64)

If G is a bipartite r-regular graph with r > 2 and G admits a P1F, then \(|V(G)| \equiv 2 \pmod{4}\).

Proof (idea): Suppose \(|V(G)| = 2n\) where \(n\) is even and there is a P1F \(F_1, F_2, \ldots, F_r\). Example: \(n = 4\)

![Diagram](image-url)
Bipartite Case

Theorem (Kotzig, ’64)

If G is a bipartite r-regular graph with $r > 2$ and G admits a $P1F$, then $|V(G)| \equiv 2 \pmod{4}$.

Proof (idea): Suppose $|V(G)| = 2n$ where n is even and there is a $P1F$ F_1, F_2, \ldots, F_r. Example: $n = 4$

$$\sigma_1 = (13)$$
Theorem (Kotzig, ’64)

If \(G \) is a bipartite \(r \)-regular graph with \(r > 2 \) and \(G \) admits a P1F, then \(|V(G)| \equiv 2 \pmod{4} \).

Proof (idea): Suppose \(|V(G)| = 2n \) where \(n \) is even and there is a P1F \(F_1, F_2, \ldots, F_r \). Example: \(n = 4 \)

\[
\begin{align*}
F_1 & : a_1 \rightarrow b_1 \\
F_2 & : a_2 \rightarrow b_2
\end{align*}
\]

\[
\begin{align*}
a_3 & \rightarrow b_3 \\
a_4 & \rightarrow b_4
\end{align*}
\]

\[
\sigma_1 = (13)
\]
Bipartite Case

Theorem (Kotzig, ’64)

If G is a bipartite r-regular graph with r > 2 and G admits a P1F, then |V(G)| ≡ 2 (mod 4).

Proof (idea): Suppose |V(G)| = 2n where n is even and there is a P1F F_1, F_2, \ldots, F_r. Example: $n = 4$

\[
F_1 \quad a_1 \rightarrow b_1 \quad \sigma_1 = (13)
\]

\[
F_2 \quad a_2 \rightarrow b_2 \quad \sigma_2 = (243)
\]

\[
a_3 \rightarrow b_3
\]

\[
a_4 \rightarrow b_4
\]
Bipartite Case

Theorem (Kotzig, ’64)

If G is a bipartite r-regular graph with $r > 2$ and G admits a P1F, then $|V(G)| \equiv 2 \pmod{4}$.

Proof (idea): Suppose $|V(G)| = 2n$ where n is even and there is a P1F F_1, F_2, \ldots, F_r. Example: $n = 4$

- F_1
 - $a_1 \rightarrow b_1$
 - $\sigma_1 = (13)$

- F_2
 - $a_2 \rightarrow b_2$
 - $\sigma_2 = (243)$

- $F_1 \cup F_2$
 - $a_3 \rightarrow b_3$
 - $1 \rightarrow 3$ by σ_1
 - $3 \rightarrow 4$ by σ_2^{-1}
Theorem (Kotzig, ’64)

If G is a bipartite r-regular graph with $r > 2$ and G admits a P1F, then $|V(G)| \equiv 2 \pmod{4}$.

Proof (idea): Suppose $|V(G)| = 2n$ where n is even and there is a P1F F_1, F_2, \ldots, F_r. Example: $n = 4$

$$F_1$$

$$a_1 \rightarrow b_1$$

$$F_2$$

$$a_2 \rightarrow b_2$$

$$F_1 \cup F_2$$

$$a_3 \rightarrow b_3$$

$$a_4 \rightarrow b_4$$

1 \rightarrow 3 by σ_1^{-1}

3 \rightarrow 4 by σ_2^{-1}

$1 \rightarrow 4$ by σ_1, σ_2
Bipartite Case

Theorem (Kotzig, ’64)

If G is a bipartite r-regular graph with r > 2 and G admits a P1F, then |V(G)| ≡ 2 (mod 4).

Proof (idea): Suppose |V(G)| = 2n where n is even and there is a P1F F_1, F_2, \ldots, F_r. Example: $n = 4$

```
F_1
a_1 - b_1

F_2
a_2 - b_2

F_1 \cup F_2
a_3 - b_3
1 \rightarrow 3 \text{ by } \sigma_1
3 \rightarrow 4 \text{ by } \sigma_2^{-1}

\sigma_1 = (13)
\sigma_2 = (243)
\sigma_{1,2} = \sigma_2^{-1} \sigma_1
= (234)(13)
= (1423)
1 \rightarrow 4 \text{ by } \sigma_{1,2}
```
Bipartite Case

Theorem (Kotzig, ’64)

If G is a bipartite r-regular graph with $r > 2$ and G admits a P1F, then $|V(G)| \equiv 2 \pmod{4}$.

Proof (idea): Suppose $|V(G)| = 2n$ where n is even and there is a P1F F_1, F_2, \ldots, F_r. Example: $n = 4$

- F_1
- F_2
- $F_1 \cup F_2$

Hamilton cycle

- $a_1 \rightarrow b_1$
- $a_2 \rightarrow b_2$
- $a_3 \rightarrow b_3$
- $a_4 \rightarrow b_4$

$\sigma_1 = (13)$

$\sigma_2 = (243)$

$\sigma_{1,2} = \sigma_2^{-1} \sigma_1$

$= (234)(13)$

$= (1423)$

single n-cycle
Bipartite Case

Theorem (Kotzig, ’64)

If G is a bipartite r-regular graph with $r > 2$ and G admits a P1F, then $|V(G)| \equiv 2 \pmod{4}$.

Proof (idea): Suppose $|V(G)| = 2n$ where n is even and there is a P1F F_1, F_2, \ldots, F_r. Example: $n = 4$

![Graph with vertices and edges illustrating the theorem's conditions](image)

- F_1
- F_2
- $F_1 \cup F_2$
- a_1, a_2, a_3, a_4
- b_1, b_2, b_3, b_4

- $\sigma_1 = (13)$
- $\sigma_2 = (243)$
- $\sigma_{1,2} = \sigma_2^{-1}\sigma_1$
 - $= (234)(13)$
 - $= (1423)$

Hamilton cycle: single n-cycle

$\sigma_j^{-1}\sigma_i$ is an odd permutation $\Rightarrow \sigma_i, \sigma_j$ have different parities
Bipartite Case

Theorem (Kotzig, ’64)

If G is a bipartite r-regular graph with $r > 2$ and G admits a P1F, then $|V(G)| \equiv 2 \pmod{4}$.

Proof (idea): Suppose $|V(G)| = 2n$ where n is even and there is a P1F F_1, F_2, \ldots, F_r. Example: $n = 4$

$$
\begin{align*}
F_1 & \quad a_1 \rightarrow b_1 \\
F_2 & \quad a_2 \rightarrow b_2 \\
F_1 \cup F_2 & \quad a_3 \rightarrow b_3 \\
a_4 & \rightarrow b_4
\end{align*}
$$

$\sigma_1 = (13)$
$\sigma_2 = (243)$
$\sigma_{1,2} = \sigma_2^{-1} \sigma_1 = (234)(13) = (1423)$

Hamilton cycle
single n-cycle

$\sigma_j^{-1} \sigma_i$ is an odd permutation $\Rightarrow \sigma_i, \sigma_j$ have different parities

This holds for all pairs i, j
Theorem (Kotzig, ’64)

If G is a bipartite r-regular graph with $r > 2$ and G admits a P1F, then $|V(G)| \equiv 2 \pmod{4}$.

Proof (idea): Suppose $|V(G)| = 2n$ where n is even and there is a P1F F_1, F_2, \ldots, F_r. Example: $n = 4$

\[
\begin{align*}
F_1 & \quad a_1 \leftrightarrow b_1 & \sigma_1 = (13) \\
F_2 & \quad a_2 \leftrightarrow b_2 & \sigma_2 = (243) \\
F_1 \cup F_2 & \quad a_3 \leftrightarrow b_3 & \sigma_{1,2} = \sigma_2^{-1} \sigma_1 \\
 & \quad a_4 \leftrightarrow b_4 & = (234)(13) \\
 & & = (1423)
\end{align*}
\]

Hamilton cycle

single n-cycle

$\sigma_j^{-1} \sigma_i$ is an odd permutation $\Rightarrow \sigma_i, \sigma_j$ have different parities

This holds for all pairs $i, j \Rightarrow r \leq 2$
Theorem (Kotzig, ’64)

If G is a bipartite r-regular graph with $r > 2$ and G admits a P1F, then $|V(G)| \equiv 2 \pmod{4}$.

Proof (idea): Suppose $|V(G)| = 2n$ where n is even and there is a P1F F_1, F_2, \ldots, F_r. Example: $n = 4$

\[
\begin{align*}
F_1 & \quad a_1 \quad b_1 & \quad \sigma_1 = (13) \\
F_2 & \quad a_2 \quad b_2 & \quad \sigma_2 = (243) \\
F_1 \cup F_2 & \quad a_3 \quad b_3 & \quad \sigma_{1,2} = \sigma_2^{-1}\sigma_1 \\
& \quad a_4 \quad b_4 & \quad = (234)(13) \\
& & \quad = (1423)
\end{align*}
\]

Hamilton cycle \quad single \ n\text{-cycle}

$\sigma_j^{-1}\sigma_i$ is an odd permutation $\Rightarrow \sigma_i, \sigma_j$ have different parities

This holds for all pairs $i, j \Rightarrow r \leq 2$

$(\Rightarrow \Leftarrow)$

\[\square\]
Bipartite Case

\(\text{Circ}(n, \{a, b\}) \) is bipartite \iff \ a, b \) are both odd.
Bipartite Case

\[\text{Circ}(n, \{a, b\}) \text{ is bipartite } \iff a, b \text{ are both odd.} \]

Corollary

If a, b are both odd and \(\text{Circ}(n, \{a, b\}) \) admits a P1F, then \(n \equiv 2 \pmod{4} \).
Bipartite Case

\[\text{Circ}(n, \{a, b\}) \text{ is bipartite } \iff a, b \text{ are both odd.} \]

Corollary

If \(a, b \) are both odd and \(\text{Circ}(n, \{a, b\}) \) admits a P1F, then \(n \equiv 2 \pmod{4} \).

Is this necessary condition sufficient?

Bipartite Case

\[\text{Circ}(n, \{a, b\}) \text{ is bipartite } \iff a, b \text{ are both odd}. \]

Corollary

If \(a, b \) are both odd and \(\text{Circ}(n, \{a, b\}) \) admits a P1F, then \(n \equiv 2 \pmod{4} \).

Is this necessary condition sufficient?

Theorem (S.H. and Maenhaut)

If \(n > 6 \), then a connected 3-regular circulant graph \(G \) of order \(n \) admits a P1F if and only if \(n \equiv 2 \pmod{4} \) and \(G \) is bipartite.
Fact (computer results)

For $8 \leq n \leq 28$, a connected 4-regular circulant $G = \text{Circ}(n, \{a, b\})$ has a P1F if and only if $n \equiv 2 \pmod{4}$ and G is bipartite.
Our Results

Fact (computer results)

For $8 \leq n \leq 28$, a connected 4-regular circulant $G = \text{Circ}(n, \{a, b\})$ has a P1F if and only if $n \equiv 2 \pmod{4}$ and G is bipartite.

Problem 1: Show that a non-bipartite 4-regular circulant of order ≥ 8 does not admit a P1F.

Problem 2: Construct P1Fs for families of bipartite 4-regular circulants of order $2 \pmod{4}$.

Not So Fast...

$\text{Circ}(30, \{1, 11\})$ does NOT admit a P1F

Problem 3: Why is there no P1F of $\text{Circ}(30, \{1, 11\})$? Are there others like it?
Our Results

Fact (computer results)

For $8 \leq n \leq 28$, a connected 4-regular circulant $G = \text{Circ}(n, \{a, b\})$ has a P1F if and only if $n \equiv 2 \pmod{4}$ and G is bipartite.

Problem 1: Show that a non-bipartite 4-regular circulant of order ≥ 8 does not admit a P1F.

Problem 2: Construct P1Fs for families of bipartite 4-regular circulants of order $2 \pmod{4}$.

Not So Fast...

$\text{Circ}(30, \{1, 11\})$ does NOT admit a P1F.

Problem 3: Why is there no P1F of $\text{Circ}(30, \{1, 11\})$? Are there others like it?
Our Results

Fact (computer results)

For $8 \leq n \leq 28$, a connected 4-regular circulant $G = \text{Circ}(n, \{a, b\})$ has a P1F if and only if $n \equiv 2 \pmod{4}$ and G is bipartite.

Problem 1: Show that a non-bipartite 4-regular circulant of order ≥ 8 does not admit a P1F.

Problem 2: Construct P1Fs for families of bipartite 4-regular circulants of order $2 \pmod{4}$.

Not So Fast...
Our Results

Fact (Computer Results)

For $8 \leq n \leq 28$, a connected 4-regular circulant $G = \text{Circ}(n, \{a, b\})$ has a P1F if and only if $n \equiv 2 \pmod{4}$ and G is bipartite.

Problem 1: Show that a non-bipartite 4-regular circulant of order ≥ 8 does not admit a P1F.

Problem 2: Construct P1Fs for families of bipartite 4-regular circulants of order $2 \pmod{4}$.

Not So Fast... Circ(30, \{1, 11\}) does NOT admit a P1F
Our Results

Fact (computer results)

For $8 \leq n \leq 28$, a connected 4-regular circulant $G = \text{Circ}(n, \{a, b\})$ has a P1F if and only if $n \equiv 2 \pmod{4}$ and G is bipartite.

Problem 1: Show that a non-bipartite 4-regular circulant of order ≥ 8 does not admit a P1F.

Problem 2: Construct P1Fs for families of bipartite 4-regular circulants of order $2 \pmod{4}$.

Not So Fast...
Circ$(30, \{1, 11\})$ does NOT admit a P1F

Problem 3: Why is there no P1F of Circ$(30, \{1, 11\})$? Are there others like it?
Problem 1: Show that a non-bipartite 4-regular circulant of order ≥ 8 does not admit a P1F.
Problem 1: Show that a non-bipartite 4-regular circulant of order ≥ 8 does not admit a P1F.

Theorem (S.H. and Maenhaut)

If $n > 6$ is even, then any connected 4-regular circulant graph isomorphic to $\text{Circ}(n, \{1, 2\})$ or to $\text{Circ}(n, \{1, 4\})$ does not admit a P1F.
Theorem (S.H. and Maenhaut)

If $n > 6$ is even, then any connected 4-regular circulant graph isomorphic to $\text{Circ}(n, \{1, 2\})$ or to $\text{Circ}(n, \{1, 4\})$ does not admit a P1F.

Theorem (S.H. and Maenhaut)

Suppose $n > 6$ and $n \equiv 2 \pmod{4}$.

Then $\text{Circ}(n, \{1, \frac{n}{2} - 1\})$ does not admit a P1F.
Problem 2: Construct P1Fs of bipartite 4-regular circulants of order 2 (mod 4).
Problem 2: Construct P1Fs of bipartite 4-regular circulants of order 2 (mod 4).

Theorem (S.H. and Maenhaut)

For \(n > 6 \), \(\text{Circ}(n, \{1, 3\}) \) admits a P1F \(\iff n \equiv 2 \pmod{4} \).
Problem 2: Construct P1Fs of bipartite 4-regular circulants of order $2 \pmod{4}$.

Theorem (S.H. and Maenhaut)

For $n > 6$, $\text{Circ}(n, \{1, 3\})$ admits a P1F $\iff n \equiv 2 \pmod{4}$.

Theorem (S.H. and Maenhaut)

Suppose $n \geq 14$, $n \equiv 2 \pmod{4}$ and $5 \leq b \leq \frac{n}{2} - 2$ is an odd integer. If $\gcd(n, b) = 1$ and $\gcd(n, b - 1) = \gcd(n, b + 1) = 2$ then any circulant isomorphic to $\text{Circ}(n, \{1, b\})$ admits a P1F.
Bipartite Constructions

Problem 2: Construct P1Fs of bipartite 4-regular circulants of order $2 \pmod{4}$.

Theorem (S.H. and Maenhaut)

For $n > 6$, $\text{Circ}(n, \{1, 3\})$ admits a P1F $\iff n \equiv 2 \pmod{4}$.

Theorem (S.H. and Maenhaut)

Suppose $n \geq 14$, $n \equiv 2 \pmod{4}$ and $5 \leq b \leq \frac{n}{2} - 2$ is an odd integer. If $\gcd(n, b) = 1$ and $\gcd(n, b - 1) = \gcd(n, b + 1) = 2$ then any circulant isomorphic to $\text{Circ}(n, \{1, b\})$ admits a P1F.

Theorem (S.H. and Maenhaut)

Suppose $n \geq 14$ and $n \equiv 2 \pmod{4}$. Then any circulant isomorphic to $\text{Circ}(n, \{1, \frac{n}{2} - 2\})$ admits a P1F.
Bipartite Constructions

<table>
<thead>
<tr>
<th>n</th>
<th>P1F</th>
<th>unknown</th>
<th>no P1F</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>${1,3}$ ${1,5}$ ${1,7}$ ${1,9}$ ${3,5}$</td>
<td>none</td>
<td>${1,11}$</td>
</tr>
<tr>
<td>34</td>
<td>${1,3}$ ${1,5}$ ${1,9}$ ${1,13}$</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>38</td>
<td>${1,3}$ ${1,5}$ ${1,7}$ ${1,9}$</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>42</td>
<td>${1,3}$ ${1,5}$ ${1,11}$ ${1,13}$</td>
<td>${1,7}$ ${1,9}$ ${1,15}$ ${3,7}$</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>${1,3}$ ${1,5}$ ${1,7}$ ${1,11}$ ${1,17}$</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>50</td>
<td>${1,3}$ ${1,7}$ ${1,9}$ ${1,13}$</td>
<td>${1,5}$ ${1,15}$ ${1,19}$</td>
<td></td>
</tr>
</tbody>
</table>

- from $\{1,3\}$ result
- from $\{1,b\}$ result
- from $\{1, \frac{n}{2} - 2\}$ result
- from other existence results
What about $\text{Circ}(30, \{1, 11\})$?

Problem 3: Why is there no P1F of $\text{Circ}(30, \{1, 11\})$? Are there others like it?
What about \text{Circ}(30, \{1, 11\})?

Problem 3: Why is there no P1F of \text{Circ}(30, \{1, 11\})? Are there others like it?

\text{Circ}(30, \{1, 11\}) can be drawn another way...
What about $\text{Circ}(30, \{1, 11\})$?

Problem 3: Why is there no P1F of $\text{Circ}(30, \{1, 11\})$? Are there others like it?

$\text{Circ}(30, \{1, 11\})$ can be drawn another way...
Implications

Theorem (S.H. and Maenhaut)

Suppose \(k \equiv 2 \pmod{4} \) and \(k > 6 \).

If \(k \equiv 10 \pmod{12} \) then \(\text{Circ}(3k, \{1, k + 1\}) \) does not admit a P1F.
Implications

Theorem (S.H. and Maenhaut)

Suppose $k \equiv 2 \pmod{4}$ and $k > 6$.

If $k \equiv 10 \pmod{12}$ then $\text{Circ}(3k, \{1, k+1\})$ does not admit a P1F.

If $k \equiv 2 \pmod{12}$ then $\text{Circ}(3k, \{1, k-1\})$ admits a P1F.
Theorem (S.H. and Maenhaut)

Suppose \(k \equiv 2 \pmod{4} \) and \(k > 6 \).

If \(k \equiv 10 \pmod{12} \) then \(\text{Circ}(3k, \{1, k + 1\}) \) does not admit a P1F.

If \(k \equiv 2 \pmod{12} \) then \(\text{Circ}(3k, \{1, k - 1\}) \) admits a P1F.

<table>
<thead>
<tr>
<th>(k \equiv 10 \pmod{12})</th>
<th>(\text{no P1F})</th>
<th>(k \equiv 2 \pmod{12})</th>
<th>P1F</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>\text{Circ}(30, {1, 11})</td>
<td>14</td>
<td>\text{Circ}(42, {1, 13})</td>
</tr>
<tr>
<td>22</td>
<td>\text{Circ}(66, {1, 23})</td>
<td>26</td>
<td>\text{Circ}(78, {1, 25})</td>
</tr>
<tr>
<td>34</td>
<td>\text{Circ}(102, {1, 35})</td>
<td>38</td>
<td>\text{Circ}(114, {1, 37})</td>
</tr>
<tr>
<td>46</td>
<td>\text{Circ}(138, {1, 47})</td>
<td>50</td>
<td>\text{Circ}(150, {1, 49})</td>
</tr>
</tbody>
</table>
Implications

Theorem (S.H. and Maenhaut)

Suppose \(k \equiv 2 \pmod{4} \) and \(k > 6 \).

If \(k \equiv 10 \pmod{12} \) *then* \(\text{Circ}(3k, \{1, k + 1\}) \) **does not** admit a P1F.

If \(k \equiv 2 \pmod{12} \) *then* \(\text{Circ}(3k, \{1, k - 1\}) \) **admits** a P1F.

<table>
<thead>
<tr>
<th>(k \equiv 10 \pmod{12})</th>
<th>no P1F</th>
<th>(k \equiv 2 \pmod{12})</th>
<th>P1F</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(\text{Circ}(30, {1, 11}))</td>
<td>14</td>
<td>(\text{Circ}(42, {1, 13}))</td>
</tr>
<tr>
<td>22</td>
<td>(\text{Circ}(66, {1, 23}))</td>
<td>26</td>
<td>(\text{Circ}(78, {1, 25}))</td>
</tr>
<tr>
<td>34</td>
<td>(\text{Circ}(102, {1, 35}))</td>
<td>38</td>
<td>(\text{Circ}(114, {1, 37}))</td>
</tr>
<tr>
<td>46</td>
<td>(\text{Circ}(138, {1, 47}))</td>
<td>50</td>
<td>(\text{Circ}(150, {1, 49}))</td>
</tr>
</tbody>
</table>

Corollary (S.H. and Maenhaut)

There is an infinite family of 4-regular bipartite circulant graphs of order \(n \equiv 2 \pmod{4} \) that do not admit a P1F.
Implications

By studying similar structures...
Implications

By studying similar structures...

Theorem (S.H. and Maenhaut)

If $k \equiv 22, 34, 46, 58 \pmod{60}$ *then there exists a P1F of* $\text{Circ}(5k, \{1, b\})$, *where* $b = k - 1, 2k + 1, 2k - 1, k + 1$, *respectively.*
Implications

By studying similar structures...

Theorem (S.H. and Maenhaut)

If $k \equiv 22, 34, 46, 58 \pmod{60}$ then there exists a P1F of $\text{Circ}(5k, \{1, b\})$, where $b = k - 1, 2k + 1, 2k - 1, k + 1$, respectively.

<table>
<thead>
<tr>
<th>k</th>
<th>existence of P1F</th>
<th>k</th>
<th>existence of P1F</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>$\text{Circ}(110, {1, 21})$</td>
<td>82</td>
<td>$\text{Circ}(410, {1, 81})$</td>
</tr>
<tr>
<td>34</td>
<td>$\text{Circ}(170, {1, 69})$</td>
<td>94</td>
<td>$\text{Circ}(470, {1, 189})$</td>
</tr>
<tr>
<td>46</td>
<td>$\text{Circ}(230, {1, 91})$</td>
<td>106</td>
<td>$\text{Circ}(530, {1, 211})$</td>
</tr>
<tr>
<td>58</td>
<td>$\text{Circ}(290, {1, 59})$</td>
<td>118</td>
<td>$\text{Circ}(590, {1, 119})$</td>
</tr>
</tbody>
</table>
Future Research

Open Problem

Characterise the bipartite 4-regular circulants of order 2 (mod 4) that admit a P1F.
Future Research

Open Problem

Characterise the bipartite 4-regular circulants of order 2 (mod 4) that admit a P1F.

Conjecture

A non-bipartite 4-regular circulant of order at least 8 does not admit a P1F.
Thank you!

Any questions?