Graph Searches and Cocomparability Graphs

Derek Corneil\(^1\) \quad Jeremie Dusart, \quad Michel Habib, \quad Ekki Koehler

\(^1\)Computer Science, University of Toronto

CanaDAM
June 10, 2013
Overview

- Maximal (Maximum?) Independent Set Algorithm
- Cocomparability Graphs, Comparability Graphs and Posets
- Overview of Graph Searching
- Comments, New Results and Concluding Remarks
Maximal (Maximum?) Independent Set Algorithm

Maximal (Maximum?) Independent Set (MIS):

Input: A connected graph $G = (V, E)$ and vertex ordering σ

Output: Set I containing the vertices of an IS

$I \leftarrow \emptyset$; $V' \leftarrow V \{V'$ stores the unprocessed vertices}; $j \leftarrow 0$

while $V' \neq \emptyset$ do

 $j \leftarrow j + 1$

 $x_j \leftarrow$ the rightmost vertex of V', as ordered by σ

 $I \leftarrow I \cup \{x_j\}$; $V' \leftarrow V' \setminus N[x_j]$

end

return (I)
Questions about the algorithm

- How is σ determined?
Questions about the algorithm

- How is σ determined?
 - *To be discussed later.*
Questions about the algorithm

- How is σ determined?
 - *To be discussed later.*
- In general can I be “close to” a maximum independent set?
Questions about the algorithm

- How is σ determined?
 - To be discussed later.

- In general can I be “close to” a maximum independent set?
 - NO. Consider $K_{2,n}$ and a degree n vertex being the rightmost vertex of σ. $I = \text{the two degree } n \text{ vertices}; \text{ whereas the maximum IS consists of the } n \text{ degree } 2 \text{ vertices.}
Questions about the algorithm

- How is σ determined?
 - To be discussed later.

- In general can I be “close to” a maximum independent set?
 - NO. Consider $K_{2,n}$ and a degree n vertex being the rightmost vertex of σ. $I =$ the two degree n vertices; whereas the maximum IS consists of the n degree 2 vertices.

- How could we “Certify” that I is a maximum IS?
Questions about the algorithm

- How is σ determined?

 To be discussed later.

- In general can I be “close to” a maximum independent set?

 NO. Consider $K_{2,n}$ and a degree n vertex being the rightmost vertex of σ. $I =$ the two degree n vertices; whereas the maximum IS consists of the n degree 2 vertices.

- How could we “Certify” that I is a maximum IS?

 Find a clique cover of the same cardinality. Note that for any graph G, $\alpha(G) \leq \kappa(G)$ where α is the maximum cardinality IS and κ is the minimum cardinality clique cover. If the graph is perfect, then equality holds.
\[\sigma = 0 \, 7 \, 9 \, 8 \, 6 \, 5 \, 3 \, 4 \, 2 \, 1 \]
\(\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 5 \ 3 \ 4 \ 2 \ 1 \)
\(\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 5 \ 4 \ 1 \)
\(\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 5 \ 3 \ 4 \ 2 \ 1 \)

\(\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 5 \ 4 \ 1 \)

\(\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 4 \ 1 \)

\(\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 4 \ 1 \)
\[\sigma = 0 7 9 8 6 5 3 4 2 1 \]
\[\sigma = 0 7 9 8 6 5 4 1 \]
\[\sigma = 0 7 9 8 6 4 1 \]
\[\sigma = 0 7 9 6 4 1 \]
Example

\[\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 5 \ 3 \ 4 \ 2 \ 1 \]

\[\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 5 \ 4 \ 1 \]

\[\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 4 \ 1 \]

\[\sigma = 0 \ 7 \ 9 \ 6 \ 4 \ 1 \]

\[\sigma = 0 \ 9 \ 6 \ 4 \ 1 \]
\[\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 5 \ 3 \ 4 \ 2 \ 1 \]
\[\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 5 \ 4 \ 1 \]
\[\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 4 \ 1 \]
\[\sigma = 0 \ 7 \ 9 \ 6 \ 4 \ 1 \]
\[\sigma = 0 \ 9 \ 6 \ 4 \ 1 \]
\[\sigma = I = 0 \ 9 \ 6 \ 4 \ 1 \]
\[\sigma = I = 0 \ 9 \ 6 \ 4 \ 1 \]
\[\sigma = l = 0 \; 9 \; 6 \; 4 \; 1 \]
\[\sigma = 0 \; 7 \; 9 \; 8 \; 6 \; 5 \; 3 \; 4 \; 2 \; 1 \]
• $\sigma = I = 0 \ 9 \ 6 \ 4 \ 1$

• $\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 5 \ 3 \ 4 \ 2 \ 1$

• Note that I is of maximum cardinality, as shown by the clique cover (from right to left): $\{2, \ 1\}$, $\{5, \ 3, \ 4\}$, $\{8, \ 6\}$, $\{7, \ 9\}$, $\{0\}$
A **cocomparability graph** $G(V, E)$ is one where the complement graph (known as a **comparability graph**1) has a transitive orientation of its edges.

1 A comparability graph together with an acyclic transitive orientation of its edges can be equivalently represented by a partially ordered set (also called a **poset**). A poset consists of a set V together with an irreflexive, antisymmetric and transitive binary relation $<$ that imposes a "precedes" relationship on certain pairs of elements of V. Two elements $x, y \in V$ are said to be **comparable** if $x < y$, or $y < x$; otherwise the elements are called **incomparable**. A **linear extension** of a poset is a total ordering of V that respects the ordering of all comparable pairs.
A cocomparability graph $G(V, E)$ is one where the complement graph (known as a comparability graph) has a transitive orientation of its edges.

In particular, there is an orientation of \overline{E} such that if there is an arc from x to y and an arc from y to z, then there is an arc from x to z.
A cocomparability graph $G(V, E)$ is one where the complement graph (known as a comparability graph) has a transitive orientation of its edges.

In particular, there is an orientation of \overline{E} such that if there is an arc from x to y and an arc from y to z, then there is an arc from x to z.

A comparability graph together with an acyclic transitive orientation of its edges can be equivalently represented by a partially ordered set (also called a poset).
A **cocomparability graph** $G(V, E)$ is one where the complement graph (known as a **comparability graph**$)$ has a transitive orientation of its edges.

In particular, there is an orientation of \overline{E} such that if there is an arc from x to y and an arc from y to z, then there is an arc from x to z.

A comparability graph together with an acyclic transitive orientation of its edges can be equivalently represented by a partially ordered set (also called a **poset**).

A poset consists of a set V together with an irreflexive, antisymmetric and transitive binary relation $<$ that imposes a “precedes” relationship on certain pairs of elements of V. Two elements $x, y \in V$ are said to be **comparable** if $x < y$, or $y < x$; otherwise the elements are called **incomparable**. A **linear extension** of a poset is a total ordering of V that respects the ordering of all comparable pairs.
DEFINITION: $G(V, E)$ is an interval graph if it is the intersection graph of subpaths of a path; namely, each vertex represents a subpath and two vertices are adjacent iff their subpaths intersect. Note that interval graphs are a strict subset of cocomparability graphs.

Theorem: G is interval if there is an ordering of V such that for all $x < y < z$, $xz \in E$ implies $xy \in E$ (I ORDER).

Theorem: G is cocomparability if there is an ordering of V such that for all $x < y < z$, $xz \in E$ implies $xy \in E$ or $yz \in E$ or both (COCOMP order).

Note that every I ORDER serves as an appropriate σ for the MIS algorithm; but many COCOMP orders fail.
DEFINITION: $G(V, E)$ is a interval graph if it is the intersection graph of subpaths of a path; namely, each vertex represents a subpath and two vertices are adjacent iff their subpaths intersect. Note that interval graphs are a strict subset of cocomparability graphs.

THEOREM: G is interval iff there is an ordering of V such that for all $x < y < z$, $xz \in E$ implies $xy \in E$ (I ORDER)

THEOREM: G is cocomparability iff there is an ordering of V such that for all $x < y < z$, $xz \in E$ implies $xy \in E$ OR $yz \in E$ OR both (COCOMP order)
DEFINITION: $G(V, E)$ is a interval graph if it is the intersection graph of subpaths of a path; namely, each vertex represents a subpath and two vertices are adjacent iff their subpaths intersect. Note that interval graphs are a strict subset of cocomparability graphs.

THEOREM: G is interval iff there is an ordering of V such that for all $x < y < z$, $xz \in E$ implies $xy \in E$ (I ORDER)

THEOREM: G is cocomparability iff there is an ordering of V such that for all $x < y < z$, $xz \in E$ implies $xy \in E$ OR $yz \in E$ OR both (COCOMP order)
Definitions Continued

- **DEFINITION**: $G(V, E)$ is an interval graph if it is the intersection graph of subpaths of a path; namely, each vertex represents a subpath and two vertices are adjacent iff their subpaths intersect. Note that interval graphs are a strict subset of cocomparability graphs.

- **THEOREM**: G is interval iff there is an ordering of V such that for all $x < y < z$, $xz \in E$ implies $xy \in E$ (*I ORDER*)

- **THEOREM**: G is cocomparability iff there is an ordering of V such that for all $x < y < z$, $xz \in E$ implies $xy \in E$ OR $yz \in E$ OR both (*COCOMP order*)

- Note that every I ORDER serves as an appropriate σ for the MIS algorithm; but many COCOMP orders fail.
Overview of Graph Searches

- algorithms for visiting all vertices and edges of a given graph
- BFS and DFS discovered in the late 1890s for maze traversal.
- In the 1960s and 1970s BFS and DFS were shown to have many applications in computer science.
- In 1976 Rose, Tarjan and Lueker presented LBFS as a way of recognizing chordal graphs (no induced cycle of size greater than 3).
- Many applications of LBFS were later found including a linear time algorithm for recognizing interval graphs.
- There is a vertex ordering characterization of LBFS orderings [Golumbic; Brandstadt, Dragan and Nicolai].
- The study of such VOCs lead to the discovery of LDFS [C. and Krueger].
Roughly speaking, LDFS is a DFS where ties are broken by favouring vertices with adjacencies to latest visited vertices.

COMPLETE the LDFS

\[
\begin{array}{c}
1 \\
2 \\
a \\
b \\
c \\
\end{array}
\]

\[\tau = 1 \ 2 \ ?\]
Lexicographic Depth First Search (LDFS)

Roughly speaking, LDFS is a DFS where ties are broken by favouring vertices with adjacencies to latest visited vertices.

COMPLETE the LDFS
COMPLETE the LDFS

\[\tau = 1\ 2\ b\ c\ a \]

IMPLEMENATION: \(O(\min\{n^2, n + m\log\log n\}) \) Spinrad and ???
- LBFS cocomp orders may fail for the MIS algorithm; for example an LBFS starting at a degree n vertex in $K_{2,n}$.
- LBFS cocomp orders may fail for the MIS algorithm; for example an LBFS starting at a degree n vertex in $K_{2,n}$.
- BUT LDFS cocomp orders succeed for the algorithm (including finding an optimum clique cover) - a surprisingly easy proof.
- LBFS cocomp orders may fail for the MIS algorithm; for example an LBFS starting at a degree n vertex in $K_{2,n}$.
- BUT LDFS cocomp orders succeed for the algorithm (including finding an optimum clique cover) - a surprisingly easy proof.
- How to generate an LDFS cocomp order? McConnell and Spinrad have a complicated linear time algorithm to generate τ, a cocomp order of a cocomp graph - but the current fastest algorithm to confirm that it is a cocomp order requires $O(MM)$ time.
LBFS cocomp orders may fail for the MIS algorithm; for example an LBFS starting at a degree \(n \) vertex in \(K_{2,n} \).

BUT LDFS cocomp orders succeed for the algorithm (including finding an optimum clique cover) - a surprisingly easy proof.

How to generate an LDFS cocomp order? McConnell and Spinrad have a complicated linear time algorithm to generate \(\tau \), a cocomp order of a cocomp graph - but the current fastest algorithm to confirm that it is a cocomp order requires \(O(MM) \) time.

Setting \(\sigma = LDFS^+(G, \tau) \) yields an LDFS order that is a cocomp order if \(\tau \) is a cocomp order.
LBFS cocomp orders may fail for the MIS algorithm; for example an LBFS starting at a degree \(n \) vertex in \(K_{2,n} \).

BUT LDFS cocomp orders succeed for the algorithm (including finding an optimum clique cover) - a surprisingly easy proof.

How to generate an LDFS cocomp order? McConnell and Spinrad have a complicated linear time algorithm to generate \(\tau \), a cocomp order of a cocomp graph - but the current fastest algorithm to confirm that it is a cocomp order requires \(O(MM) \) time.

Setting \(\sigma = LDFS^+(G, \tau) \) yields an LDFS order that is a cocomp order if \(\tau \) is a cocomp order.

A \(^+ \) sweep breaks ties by choosing the rightmost tied vertex as ordered by \(\tau \).
Consider this graph and cocomp order $\tau = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0$

- $\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 5 \ 3 \ 4 \ 2 \ 1$ - This ordering is the one used in the example of the MIS algorithm.
Example of LDFS⁺

Consider this graph and cocomp order \(\tau = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0 \)

- \(\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 5 \ 3 \ 4 \ 2 \ 1 \) - This ordering is the one used in the example of the MIS algorithm.
- The first vertex of \(\sigma \) is the rightmost vertex of \(\tau \), namely 0. The next vertex is 7.
Consider this graph and cocomp order $\tau = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 0$

- $\sigma = 0 \ 7 \ 9 \ 8 \ 6 \ 5 \ 3 \ 4 \ 2 \ 1$ - This ordering is the one used in the example of the MIS algorithm.
- The first vertex of σ is the rightmost vertex of τ, namely 0. The next vertex is 7.
- Now there is a tie amongst 8, 9, 5. Since 9 is rightmost it is chosen next, followed by 8 (rightmost between 5 and 8).
Consider this graph and cocomp order $\tau = 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 0$

- $\sigma = 0\ 7\ 9\ 8\ 6\ 5\ 3\ 4\ 2\ 1$ - This ordering is the one used in the example of the MIS algorithm.
- The first vertex of σ is the rightmost vertex of τ, namely 0. The next vertex is 7.
- Now there is a tie amongst 8, 9, 5. Since 9 is rightmost it is chosen next, followed by 8 (rightmost between 5 and 8).
- The next vertex is 6 - now LDFS forces 5 and then 3, followed by 4, 2, 1.
By having a certification step, we will either guarantee that we have a maximum IS or will output a message that the given ordering is not a cocomp ordering. Note that we do not confirm that our given ordering τ is a cocomp ordering.

Similar LDFS$^+$ modified interval graph algorithms work for:

- Minimum Path Cover (equivalent to the bump number problem on posets) [C., Dalton, H.]
- Longest Path [Mertzios, C.]

These algorithms give us insight into the “LDFS structure of posets”.
New Results

- We have a characterization of the searches \mathcal{S} such that $\sigma = S^+(\tau)$ is a cocomp order whenever τ is a cocomp order.
We have a characterization of the searches \mathcal{S} such that $\sigma = \mathcal{S}^+(\tau)$ is a cocomp order whenever τ is a cocomp order.

Using a new graph search we have an easier permutation recognition algorithm.
We have a characterization of the searches \mathcal{S} such that $\sigma = \mathcal{S}^+(\tau)$ is a cocomp order whenever τ is a cocomp order.

Using a new graph search we have an easier permutation recognition algorithm.

We also have structural results on a lattice built on the set of maximal cliques in a cocomp graph - note that the number of such cliques can grow exponentially with n.
New Results

- We have a characterization of the searches \mathcal{S} such that $\sigma = S^+(\tau)$ is a cocomp order whenever τ is a cocomp order.
- Using a new graph search we have an easier permutation recognition algorithm.
- We also have structural results on a lattice built on the set of maximal cliques in a cocomp graph - note that the number of such cliques can grow exponentially with n.
- Using these results we have a new graph search and simple algorithms to compute minimal clique separators and to find simplicial vertices in cocomp graphs.
Are there more new searches and new simple algorithms for cocomp graphs?
Concluding Remarks

- Are there more new searches and new simple algorithms for cocomp graphs?

- J.D., E.K and I are guardedly optimistic that we can extend Keil’s HC algorithm for interval graphs to get a “linear” (off by a $\log\log n$ factor) HC algorithm for cocomp graphs. This algorithm is also certifying insofar as if there is no HC the algorithm outputs a toughness certificate.
Concluding Remarks

- Are there more new searches and new simple algorithms for cocomp graphs?
- J.D., E.K and I are guardedly optimistic that we can extend Keil’s HC algorithm for interval graphs to get a “linear” (off by a $\log\log n$ factor) HC algorithm for cocomp graphs. This algorithm is also certifying insofar as if there is no HC the algorithm outputs a toughness certificate.
- New insights into the structure of posets? What about other areas of mathematics?
Concluding Remarks

- Are there more new searches and new simple algorithms for cocomp graphs?
- J.D., E.K and I are guardedly optimistic that we can extend Keil’s HC algorithm for interval graphs to get a “linear” (off by a $\log\log n$ factor) HC algorithm for cocomp graphs. This algorithm is also certifying insofar as if there is no HC the algorithm outputs a toughness certificate.
- New insights into the structure of posets? What about other areas of mathematics?
- Can these results extend to AT-free graphs?
Concluding Remarks

- Are there more new searches and new simple algorithms for cocomp graphs?
- J.D., E.K and I are guardedly optimistic that we can extend Keil’s HC algorithm for interval graphs to get a “linear” (off by a $\log \log n$ factor) HC algorithm for cocomp graphs. This algorithm is also certifying insofar as if there is no HC the algorithm outputs a toughness certificate.
- New insights into the structure of posets? What about other areas of mathematics?
- Can these results extend to AT-free graphs?
- Can we use graph searching for heuristic algorithms? Already used for the diameter of the giant component of the Facebook Graph.
Thank you for your attention, Eric