Forbidden Families of Configurations

Richard Anstee,
UBC, Vancouver

Joint work with Christina Koch
CanaDAM 2013
Memorial University, St. John’s, Newfoundland
June 13, 2013
Consider the following family of subsets of \(\{1, 2, 3, 4\} \):
\[\mathcal{A} = \{\emptyset, \{1, 2, 4\}, \{1, 4\}, \{1, 2\}, \{1, 2, 3\}, \{1, 3\}\} \]
The incidence matrix \(A \) of the family \(\mathcal{A} \) of subsets of \(\{1, 2, 3, 4\} \) is:

\[
A = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{bmatrix}
\]

Definition We say that a matrix \(A \) is *simple* if it is a \((0,1)\)-matrix with no repeated columns.

Definition We define \(\|A\| \) to be the number of columns in \(A \).
\[
\|A\| = 6 = |\mathcal{A}|
\]
Definition Given a matrix F, we say that A has F as a
configuration (denoted $F \prec A$) if there is a submatrix of A which is
a row and column permutation of F.

\[
F = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \prec A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}
\]
Definition Given a matrix F, we say that A has F as a\textit{ configuration} (denoted $F \prec A$) if there is a submatrix of A which is a row and column permutation of F.

\[
F = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \quad \prec \quad A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}
\]

Definitions

\[
\mathcal{F} = \{F_1, F_2, \ldots, F_t\}
\]

\[
\text{Avoid}(m, \mathcal{F}) = \{ A : A \text{ m-rowed simple, } F \not\prec A \text{ for all } F \in \mathcal{F} \}
\]

\[
\text{forb}(m, \mathcal{F}) = \max_A \{ \|A\| : A \in \text{Avoid}(m, \mathcal{F}) \}
\]
Definition Let K_k be the $k \times 2^k$ simple matrix of all possible columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$\text{forb}(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots + \binom{m}{0} \text{ which is } \Theta(m^{k-1}).$$

Theorem (Füredi 83). Let F be a $k \times \ell$ matrix. Then

$$\text{forb}(m, F) = O(m^k).$$

Problem Given \mathcal{F}, can we predict the behaviour of $\text{forb}(m, \mathcal{F})$?
Balanced and Totally Balanced Matrices

Let C_k denote the $k \times k$ vertex-edge incidence matrix of the cycle of length k.

e.g. $C_3 = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, $C_4 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$.
Balanced and Totally Balanced Matrices

Let C_k denote the $k \times k$ vertex-edge incidence matrix of the cycle of length k.

e.g. $C_3 = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, $C_4 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$.

Matrices in $\text{Avoid}(m, \{C_3, C_5, C_7, \ldots\})$ are called Balanced Matrices.

Theorem $\text{forb}(m, \{C_3, C_5, C_7, \ldots\}) = \text{forb}(m, C_3)$
Balanced and Totally Balanced Matrices

Let C_k denote the $k \times k$ vertex-edge incidence matrix of the cycle of length k.

\[
\begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
\end{bmatrix}, \quad
\begin{bmatrix}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
\end{bmatrix}.
\]

Matrices in Avoid($m, \{C_3, C_5, C_7, \ldots\}$) are called Balanced Matrices.

Theorem $\text{forb}(m, \{C_3, C_5, C_7, \ldots\}) = \text{forb}(m, C_3)$

Matrices in Avoid($m, \{C_3, C_4, C_5, C_6, \ldots\}$) are called Totally Balanced Matrices.

Theorem $\text{forb}(m, \{C_3, C_4, C_5, C_6, \ldots\}) = \text{forb}(m, C_3)$
Remark If $\mathcal{F} \subset \mathcal{F}$ then $\text{forb}(m, \mathcal{F}) \leq \text{forb}(m, \mathcal{F}')$.

The inequality $\text{forb}(m, \{C_3, C_4, C_5, C_6, \ldots\}) \leq \text{forb}(m, C_3)$ follows from the remark.

The equality follows from a result that any $m \times \text{forb}(m, C_3)$ simple matrix in Avoid(m, C_3) is in fact totally balanced (A, 80).

Thus we conclude $\text{forb}(m, \{C_3, C_4, C_5, C_6, \ldots\}) = \text{forb}(m, C_3)$.
A Product Construction

The building blocks of our product constructions are I, I^c and T:

$$I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad I^c_4 = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \quad T_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Definition Given an $m_1 \times n_1$ matrix A and a $m_2 \times n_2$ matrix B we define the product $A \times B$ as the $(m_1 + m_2) \times (n_1 n_2)$ matrix consisting of all $n_1 n_2$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Given p simple matrices A_1, A_2, \ldots, A_p, each of size $m/p \times m/p$, the p-fold product $A_1 \times A_2 \times \cdots \times A_p$ is a simple matrix of size $m \times (m^p/p^p)$ i.e. $\Theta(m^p)$ columns.
Definition Given an \(m_1 \times n_1 \) matrix \(A \) and a \(m_2 \times n_2 \) matrix \(B \) we define the product \(A \times B \) as the \((m_1 + m_2) \times (n_1 n_2) \) matrix consisting of all \(n_1 n_2 \) possible columns formed from placing a column of \(A \) on top of a column of \(B \). If \(A, B \) are simple, then \(A \times B \) is simple. (A, Griggs, Sali 97)

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\times
\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{bmatrix}
\]

Given \(p \) simple matrices \(A_1, A_2, \ldots, A_p \), each of size \(m/p \times m/p \), the \(p \)-fold product \(A_1 \times A_2 \times \cdots \times A_p \) is a simple matrix of size \(m \times (m^p/p^p) \) i.e. \(\Theta(m^p) \) columns.
Definition Let \(x(\mathcal{F}) \) denote the smallest \(p \) such that for every \(p \)-fold product \(A_1 \times A_2 \times \cdots \times A_p \), where each \(A_i \in \{ I_{m/p}, I_{m/p}^c, T_{m/p} \} \), there is some \(F \in \mathcal{F} \) with \(F \prec A_1 \times A_2 \times \cdots \times A_p \).

Thus there is some \((p - 1)\)-fold product \(A_1 \times A_2 \times \cdots \times A_{p-1} \in \text{Avoid}(m, \mathcal{F})\) showing that \(\text{forb}(m, \mathcal{F}) \) is \(\Omega(m^{p-1}) \).
The Conjecture

Definition Let $x(\mathcal{F})$ denote the smallest p such that for every p-fold product $A_1 \times A_2 \times \cdots \times A_p$, where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}$, there is some $F \in \mathcal{F}$ with $F \prec A_1 \times A_2 \times \cdots \times A_p$.

Thus there is some $(p-1)$-fold product $A_1 \times A_2 \times \cdots \times A_{p-1} \in \text{Avoid}(m, \mathcal{F})$ showing that $\text{forb}(m, \mathcal{F})$ is $\Omega(m^{p-1})$.

Conjecture (A, Sali 05) Let $|\mathcal{F}| = 1$. Then $\text{forb}(m, \mathcal{F})$ is $\Theta(m^{x(\mathcal{F})-1})$.

In other words, we predict our product constructions with the three building blocks $\{I, I^c, T\}$ determine the asymptotically best constructions when $|\mathcal{F}| = 1$.

Richard Anstee, UBC, Vancouver
Forbidden Families of Configurations
The Conjecture

Definition Let \(x(F) \) denote the smallest \(p \) such that for every \(p \)-fold product \(A_1 \times A_2 \times \cdots \times A_p \), where each \(A_i \in \{ I_{m/p}, I^c_{m/p}, T_{m/p} \} \), there is some \(F \in F \) with \(F \prec A_1 \times A_2 \times \cdots \times A_p \). Thus there is some \((p-1)\)-fold product \(A_1 \times A_2 \times \cdots \times A_{p-1} \in \text{Avoid}(m,F) \) showing that \(\text{forb}(m,F) \) is \(\Omega(m^{p-1}) \).

Conjecture (A, Sali 05) Let \(|F| = 1 \). Then \(\text{forb}(m,F) \) is \(\Theta(m^{x(F)-1}) \).

In other words, we predict our product constructions with the three building blocks \(\{ I, I^c, T \} \) determine the asymptotically best constructions when \(|F| = 1 \).

The conjecture has been verified for \(k \times \ell \ F \) where \(k = 2 \) (A, Griggs, Sali 97) and \(k = 3 \) (A, Sali 05) and \(\ell = 2 \) (A, Keevash 06).
Definition \(\text{ex}(m, H) \) is the maximum number of edges in a (simple) graph \(G \) on \(m \) vertices that has no subgraph \(H \).

\(A \in \text{Avoid}(m, \mathbf{1}_3) \) will be a matrix with up to \(m + 1 \) columns of sum 0 or sum 1 plus columns of sum 2 which can be viewed as the vertex-edge incidence matrix of a graph.

Let \(\text{Inc}(H) \) denote the \(|V(H)| \times |E(H)| \) vertex-edge incidence matrix associated with \(H \).

Theorem \(\text{forb}(m, \{\mathbf{1}_3, \text{Inc}(H)\}) = m + 1 + \text{ex}(m, H) \).
Definition \(\text{ex}(m, H) \) is the maximum number of edges in a (simple) graph \(G \) on \(m \) vertices that has no subgraph \(H \).

\(A \in \text{Avoid}(m, 1_3) \) will be a matrix with up to \(m + 1 \) columns of sum 0 or sum 1 plus columns of sum 2 which can be viewed as the vertex-edge incidence matrix of a graph.

Let \(\text{Inc}(H) \) denote the \(|V(H)| \times |E(H)| \) vertex-edge incidence matrix associated with \(H \).

Theorem \(\text{forb}(m, \{1_3, \text{Inc}(H)\}) = m + 1 + \text{ex}(m, H) \).

In this talk \(I(C_4) = C_4 \), \(I(C_6) = C_6 \).

Theorem \(\text{forb}(m, \{1_3, C_4\}) = m + 1 + \text{ex}(m, C_4) \) which is \(\Theta(m^{3/2}) \). note that \(x(\{1_3, C_4\}) = 2 \)

Theorem \(\text{forb}(m, \{1_3, C_6\}) = m + 1 + \text{ex}(m, C_6) \) which is \(\Theta(m^{4/3}) \). note that \(x(\{1_3, C_6\}) = 2 \)
Forbidden Families of Configurations

Theorem $forb(m, \{1_3, \text{Inc}(H)\}) = m + 1 + \text{ex}(m, H)$.

Theorem Let T be a graph with no cycles. Then $\text{ex}(m, T)$ is $O(m)$.

Corollary Let F be a (0,1)-matrix with column sums at most 2. Assume $C_k \not\preceq F$ for $k = 2, 3, \ldots$ (we don’t allow repeated columns of sum 2 but allow other repeated columns). Then $forb(m, \{1_3, F\})$ is $O(m)$.

Proof: We can find a graph T with no cycles such that $F \prec \text{Inc}(T)$. Then $forb(m, \{1_3, F\}) \leq m + 1 + \text{ex}(m, T)$.
Theorem (Balogh and Bollobás 05) Let k be given. Then there is a constant c_k so that $\text{forb}(m, \{I_k, I^c_k, T_k\}) = c_k$.

We note that $x(\{I_k, I^c_k, T_k\}) = 1$ and so there is no obvious product construction.

Note that $c_k \geq \binom{2k-2}{k-1}$ by taking all columns of column sum at most $k - 1$ that arise from the $k - 1$-fold product $T_{k-1} \times T_{k-1} \times \cdots \times T_{k-1}$.
Let $\mathcal{F} = \{F_1, F_2, \ldots, F_k\}$ and $\mathcal{G} = \{G_1, G_2, \ldots, G_\ell\}$.

Lemma Let \mathcal{F} and \mathcal{G} have the property that for every $G_i \in \mathcal{G}$, there is some $F_j \in \mathcal{F}$ with $F_j \prec G_i$. Then $\text{forb}(m, \mathcal{F}) \leq \text{forb}(m, \mathcal{G})$.
Let $\mathcal{F} = \{F_1, F_2, \ldots, F_k\}$ and $\mathcal{G} = \{G_1, G_2, \ldots, G_\ell\}$.

Lemma Let \mathcal{F} and \mathcal{G} have the property that for every $G_i \in \mathcal{G}$, there is some $F_j \in \mathcal{F}$ with $F_j \prec G_i$. Then $\text{forb}(m, \mathcal{F}) \leq \text{forb}(m, \mathcal{G})$.

Theorem Let \mathcal{F} be given. Then either $\text{forb}(m, \mathcal{F})$ is $O(1)$ or $\text{forb}(m, \mathcal{F})$ is $\Omega(m)$.
Let $\mathcal{F} = \{F_1, F_2, \ldots, F_k\}$ and $\mathcal{G} = \{G_1, G_2, \ldots, G_\ell\}$.

Lemma Let \mathcal{F} and \mathcal{G} have the property that for every $G_i \in \mathcal{G}$, there is some $F_j \in \mathcal{F}$ with $F_j \prec G_i$. Then $\text{forb}(m, \mathcal{F}) \leq \text{forb}(m, \mathcal{G})$.

Theorem Let \mathcal{F} be given. Then either $\text{forb}(m, \mathcal{F})$ is $O(1)$ or $\text{forb}(m, \mathcal{F})$ is $\Omega(m)$.

Proof: We start using $\mathcal{G} = \{I_p, I^c_p, T_p\}$ with p suitably large. Either we have the property that there is some $F_r \prec I_p$, and some $F_s \prec I^c_p$ and some $F_t \prec T_p$ in which case $\text{forb}(m, \mathcal{F}) \leq \text{forb}(m, \{I_p, I^c_p, T_p\})$ which is $O(1)$ or without loss of generality we have $F_j \not\prec I_p$ for all j and hence $I_m \in \text{Avoid}(m, \mathcal{F})$ and so $\text{forb}(m, \mathcal{F})$ is $\Omega(m)$.
A pair of Configurations with quadratic bounds

e.g. $F_2(1, 2, 2, 1) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \not\preceq I \times I^c.$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{I_3} \times \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}_{I_3^c} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}_{I_m/2} \times I_{m/2}^c$$
A pair of Configurations with quadratic bounds

e.g. \(F_2(1, 2, 2, 1) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \not\prec I \times I^c. \)

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}_{I_3} \times \begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix}_{I_3^c} = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0
\end{bmatrix}
\]

\(I_{m/2} \times I_{m/2}^c \) is an \(m \times m^2/4 \) simple matrix avoiding \(F_2(1, 2, 2, 1) \), so \(\text{forb}(m, F_2(1, 2, 2, 1)) \) is \(\Omega(m^2) \).

(A, Ferguson, Sali 01 \(\text{forb}(m, F_2(1, 2, 2, 1)) = \left\lceil \frac{m^2}{4} \right\rceil + \binom{m}{1} + \binom{m}{0} \))
A pair of Configurations with quadratic bounds

e.g. $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \not\preceq T \times T$. Also $I_3 \not\preceq I^c \times T$, $I_3 \not\preceq I^c \times I^c$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
A pair of Configurations with quadratic bounds

e.g. \(I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \not\prec T \times T \). Also \(I_3 \not\prec I^c \times T, I_3 \not\prec I^c \times I^c \)

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0
\end{bmatrix}
\]

\(T_{m/2} \times T_{m/2} \) is an \(m \times m^2/4 \) simple matrix avoiding \(I_3 \),
so \(\text{forb}(m, I_3) \) is \(\Omega(m^2) \).

\(\text{forb}(m, I_3) = \binom{m}{2} + \binom{m}{1} + \binom{m}{0} \)
By considering the construction $I \times I^c$ that avoids $F_2(1, 2, 2, 1)$ and the constructions $I^c \times I^c$ or $I^c \times T$ or $T \times T$ that avoids I_3, we note $x(\{I_3, F_2(1, 2, 2, 1)\}) = 2$ so that we have only linear obvious constructions (I_m^c or T_m) that avoid both $F_2(1, 2, 2, 1)$ and I_3. We are led to the following:

Theorem $\text{forb}(m, \{I_3, F_2(1, 2, 2, 1)\})$ is $\Theta(m)$.
By considering the construction $I \times I^c$ that avoids $F_2(1, 2, 2, 1)$ and the constructions $I^c \times I^c$ or $I^c \times T$ or $T \times T$ that avoids I_3, we note $x(\{I_3, F_2(1, 2, 2, 1)\}) = 2$ so that we have only linear obvious constructions (I_m^c or T_m) that avoid both $F_2(1, 2, 2, 1)$ and I_3. We are led to the following:

Theorem forb$(m, \{I_3, F_2(1, 2, 2, 1)\})$ is $\Theta(m)$.

We can extend the argument quite far:

Theorem forb$(m, \{t \cdot I_k, F_2(1, t, t, 1)\})$ is $\Theta(m)$.

Forbidden Families of Configurations
Another example:

\[\text{forb}(m, \{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 11 \cdots 1 & 00 \cdots 0 & 1 \\ 0 & 00 \cdots 0 & 11 \cdots 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 00 \cdots 0 & 11 \cdots 1 & 1 \end{bmatrix}) \} \text{ is } O(m). \]
Another example:

\[
\begin{bmatrix}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 1 & \cdots & 1 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 & 1
\end{bmatrix}
\]

\(\text{forb}(m, \{\)} \} \) is \(O(m)\).

We studied the 9 ‘minimal’ configurations that have quadratic bounds and were able to verify the predictions of the conjecture for all subsets of these 9.
An unusual Bound

Theorem (A,Koch,Raggi,Sali 12) $\text{forb}(m, \{ T_2 \times T_2, l_2 \times l_2 \})$ is $\Theta(m^{3/2})$.

$$T_2 \times T_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \quad l_2 \times l_2 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} (= C_4)$$

We showed initially that $\text{forb}(m, \{ T_2 \times T_2, T_2 \times l_2, l_2 \times l_2 \})$ is $\Theta(m^{3/2})$ but Christina Koch realized that we ought to be able to drop $T_2 \times l_2$ and we were able to redo the proof (which simplified slightly!).
Miguel Raggi, Attila Sali
Let A be an $m \times \text{forb}(m, F)$ simple matrix with no configuration in $F = \{T_2 \times T_2, I_2 \times I_2\}$. We can select a row r and reorder rows and columns to obtain

$$A = \text{row } r \begin{bmatrix} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & C_r & C_r & D_r \end{bmatrix}. $$
Let A be an $m \times \text{forb}(m,\mathcal{F})$ simple matrix with no configuration in $\mathcal{F} = \{T_2 \times T_2, I_2 \times I_2\}$. We can select a row r and reorder rows and columns to obtain

$$A = \begin{array}{cccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & C_r & C_r & D_r \end{array}.$$}

To show $\|A\|$ is $O(m^{3/2})$ it would suffice to show $\|C_r\|$ is $O(m^{1/2})$ for some choice of r. Our proof shows that assuming $\|C_r\| > 20m^{1/2}$ for all choices r results in a contradiction. In particular, associated with C_r is a set of rows $S(r)$ with $S(r) \geq 5m^{1/2}$. We let $S(r) = \{r_1, r_2, r_3, \ldots\}$. After some work we show that $|S(r_i) \cap S(r_j)| \leq 5$. Then we have

$$|S(r_1) \cup S(r_2) \cup S(r_3) \cup \cdots| = |S(r_1)| + |S(r_2)\backslash S(r_1)| + |S(r_3)\backslash (S(r_1) \cup S(r_2))| + \cdots = 5m^{1/2} + (5m^{1/2} - 5) + (5m^{1/2} - 10) + \cdots > m!!!$$
Thanks to all the organizers of CanaDAM 2013!
Great to visit Newfoundland.
I very much enjoyed the Fish and Brew(i)s.