On the directed Oberwolfach Problem with equal cycle lengths

Mateja Šajna
University of Ottawa

Joint work with Andrea Burgess, Nevena Francetić, and Patrick Niesink

CanaDAM 2013
Outline

- Introduction: The directed Oberwolfach Problem.
- Main results.
- Terminology.
- Tools.
- Ideas from proofs.
Resolvable directed cycle systems
— the directed Oberwolfach Problem with equal cycle lengths

- Directed Oberwolfach Problem with equal cycle lengths:
 Determine the necessary and sufficient conditions on \(n \) and \(m \) for there to exist a decomposition of \(K_n^* \) into spanning subdigraphs, each a disjoint union of directed \(m \)-cycles (that is, a \(RCS^*(m, n) \)).

- Obvious necessary condition: \(m | n \).

- Previous results:

 Theorem (Bermond, Germa, Sotteau, 1979)

 There exists a \(RCS^*(3, n) \) if and only if \(3 | n \) and \(n \neq 6 \).

 Theorem (Bennett, Zhang, 1990)

 There exists a \(RCS^*(4, n) \) if and only if \(4 | n \) and \(n \neq 4 \).
New results

Theorem (Burgess, Francetić, Niesink, Šajna)

There exist the following:

- a $RCS^*(m, \alpha m)$ for odd $m \geq 5$ and odd α;
- a $RCS^*(m, \alpha m)$ for even $m \geq 6$ and all $\alpha \geq 2$;
- a $RCS^*(m, \alpha m)$ for odd m, $7 \leq m \leq 49$, $3 \nmid m$, and all even α;
- a $RCS^*(m, \alpha m)$ for $m = 9, 15, 21$, and all even α.

Lemma

If there exists a $RCS^*(m, 2m)$, then there exists a $RCS^*(m, \alpha m)$ for all even α.
Basic terminology

- \(G^* \): the (symmetric) digraph obtained from a graph \(G \) by replacing each edge \(uv \) with the two arcs \((u, v)\) and \((v, u)\)
- \(K^*_n, K^*_m \)
- \(C_m \) and \(\vec{C}_m \): cycle and directed cycle of length \(m \)
- **Wreath product** \(G \star H \) of (di)graphs \(G \) and \(H \): obtained from \(G \) by replacing every vertex \(u \) of \(G \) with a copy \(H_u \) of \(H \), and for each edge \(uv \) (arc \((u, v)\)) of \(G \), inserting an edge (arc) from every vertex of \(H_u \) to every vertex of \(H_v \)
Terminology

- **Decomposition** $G = H_1 \oplus H_2 \oplus \ldots \oplus H_k$: partition of $E(G)$ into $E(H_1), E(H_2), \ldots, E(H_k)$, for subgraphs H_1, H_2, \ldots, H_k of G

- **H-decomposition** of a graph G: decomposition of G into copies of a subgraph H

- **Resolution class:**
 a subset $\{H_{i_1}, H_{i_2}, \ldots, H_{i_t}\}$ of a decomposition $\mathcal{D} = \{H_1, H_2, \ldots, H_k\}$ of G such that $\{V(H_{i_1}), V(H_{i_2}), \ldots, V(H_{i_t})\}$ is a partition of $V(G)$

- **Resolvable decomposition:**
 a decomposition that can be partitioned into resolution classes

- **$RCS(m, G)$**: resolvable m-cycle decomposition of a graph G

- **$CS^*(m, D)$**: directed m-cycle decomposition of a digraph D

- **$RCS^*(m, D)$**: resolvable dir. m-cycle decomposition of a digraph D
Tools: previous results

Theorem (Alspach, Schellenberg, Stinson, Wagner)

There exists a $RCS(m, K_n)$ if and only if n is odd and $m|n$.

Theorem (Alspach, Jordon, Šajna, Verrall)

There exists a $CS^*(m, K_n^*)$ if and only if $m|n(n - 1)$ and $(m, n) \notin \{(4, 4), (3, 6), (6, 6)\}$.

Theorem (Liu)

There exists a $RCS(m, K_n \star \bar{K}_t)$ if and only if $m|nt$, $t(n - 1)$ is even, m is even if $n = 2$, and $(m, n, t) \notin \{(3, 3, 2), (3, 3, 6), (3, 6, 2), (6, 2, 6)\}$.
For even $m \geq 4$, there exist a $CS^*(m, K_{m^2/2}, m)$ and $RCS^*(m, K_{m,m})$.
Let $m \geq 4$ be even and $\alpha \geq 3$.
There exists a $RCS^*(m, C^*_\alpha \star \overline{K}_m)$.
Case α odd:
Let $m \geq 4$ be even and $\alpha \geq 2$.

Case α even: there exists a 1-factorization of K_{α}.

Case α odd: there exists a $RCS(\alpha, K_{\alpha})$.

Hence there exists a $RCS^*(m, K_{\alpha}^* \star \bar{K}_m)$.

mateja@uottawa.ca

On the directed Oberwolfach Problem

10 / 21
Proof ideas: Case \(\alpha \) and \(m \) both odd, or \(m \geq 8 \) even.

Case \(\alpha \) and \(m \) both odd.
- By [ASSW], there exists a \(RCS(m, K_{\alpha m}) \).
- Direct each cycle in this decomposition once in each possible direction to obtain a \(RCS^*(m, K_{\alpha m}^*) \).

Case \(m \geq 8 \) even.
- Decompose \(K_{\alpha m}^* = K_\alpha^* \star K_m^* \oplus K_{\alpha}^* \star \bar{K}_m \).
- There exists a \(CS^*(m, K_m^*) \) by [AJŠV].
- Hence there exists a \(RCS^*(m, K_\alpha^* \star K_m^*) \).
- There exists a \(RCS^*(m, K_\alpha^* \star \bar{K}_m) \) as seen before (also by [Liu]).
Proof ideas: Case $m = 6$.

Challenge: a $CS^*(6, K_6^*)$ does not exist.

Case $\alpha \geq 2$ even.

- Decompose $K_{6,\alpha} = \bar{K}_{\frac{\alpha}{2}} \ast K_{12}^* \oplus K_{\frac{\alpha}{2}}^* \ast \bar{K}_{12}$.
- There exists a $RCS^*(6, K_{\frac{\alpha}{2}}^* \ast \bar{K}_{12})$ by [Liu].
- There exists a $RCS^*(6, K_{12}^*)$ (shown on the next page).
Proof ideas: Case $m = 6$ — continued.

A $\text{RCS}^{*}(6, K_{12}^*)$:

+ mirror image

$+ 2$ more resolution classes
Proof ideas: Case $m = 6$ — continued.

Case $\alpha \geq 3$ odd.

- There exists a $CS(\alpha, K_{\alpha})$.
- Decompose $K_{6\alpha}$ into $C^{*}_{\alpha} \star K_{6}^{*}$ and $\frac{\alpha-1}{2}$ copies of $C^{*}_{\alpha} \star \bar{K}_{6}$.
- There exists a $RCS^{*}(6, C^{*}_{\alpha} \star K_{6}^{*})$ (special construction).
- There exists a $RCS^{*}(6, C^{*}_{\alpha} \star \bar{K}_{6})$ as seen.
Proof ideas: Case α even, m odd.

- Decompose $K_{\alpha m}^* = \bar{K}_{\alpha/2}^* \ast K_{2m}^* \oplus K_{\alpha/2}^* \ast \bar{K}_{2m}$.
- By [Liu], there exists a $RCS(m, K_{\alpha/2}^* \ast \bar{K}_{2m})$.
- Hence, there exists a $RCS^*(m, K_{\alpha/2}^* \ast \bar{K}_{2m})$.
- Then the existence of a $RCS^*(m, K_{2m}^*)$ implies the existence of a $RCS^*(m, K_{\alpha m}^*)$.

![Diagram of proof ideas](image-url)
What we know about $RCS^*(m, 2m)$

Proposition

$RCS^*(m, 2m)$ exists for

- odd m, $7 \leq m \leq 49$, $3 \nmid m$;
- $m = 9, 15, 21$.

Mateja Šajna (U of Ottawa)
Proof ideas: $m = 5$

There exist a $RCS^*(5, K_{10}^*)$:

![Diagram of a directed graph with 10 vertices and directed edges connecting each vertex to every other vertex. The graph is symmetric and complete.]
Proof ideas: A $\text{RCS}^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.
Proof ideas: A \(RCS^*(m, 2m) \) for \(m \equiv 1 \) or \(5 \pmod{6} \), \(7 \leq m \leq 49 \).
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.

\[\]
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.

![Diagram showing directed paths](Image)
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.

Left:

Right:
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or 5 (mod 6), $7 \leq m \leq 49$.

Left

Right
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.

Left

Right
Proof ideas: A \(RCS^*(m, 2m) \) for \(m \equiv 1 \) or \(5 \) (mod 6), \(7 \leq m \leq 49 \).
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.

Left

Right
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.

Left

Right
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.

Left

Right
Proof ideas: A \(RCS^*(m, 2m) \) for \(m \equiv 1 \) or \(5 \pmod{6} \), \(7 \leq m \leq 49 \).

It remains to decompose the digraph on the right into:
- vertex-disjoint dir. \((5, 2)\)-path of length 2 and \((3, 4)\)-path of length 3, and
- directed Hamilton cycles.
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.

It remains to decompose the digraph on the right into:
- vertex-disjoint dir. $(5, 2)$-path of length 2 and $(3, 4)$-path of length 3, and
- directed Hamilton cycles.
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.

It remains to decompose the digraph on the right into:

- vertex-disjoint dir. $(5, 2)$-path of length 2 and $(3, 4)$-path of length 3, and
- directed Hamilton cycles
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.

It remains to decompose the digraph on the right into:

- vertex-disjoint dir. $(5, 2)$-path of length 2 and $(3, 4)$-path of length 3, and
- directed Hamilton cycles
Proof ideas: A $RCS^*(m, 2m)$ for $m \equiv 1$ or $5 \pmod{6}$, $7 \leq m \leq 49$.

It remains to decompose the digraph on the right into:
- vertex-disjoint dir. $(5, 2)$-path of length 2 and $(3, 4)$-path of length 3, and
- directed Hamilton cycles.
Thank you!