Unique graph representations of bias matroids

Daryl Funk

joint with

Matt DeVos Luis Goddyn Irene Pivotto

CanaDAM
Memorial University of Newfoundland
June 11, 2013
Circuits in graphs

- A circuit is the edge set of a cycle

<table>
<thead>
<tr>
<th>Graph</th>
<th>Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a, b, c, d}</td>
<td>{a, b, c, d}</td>
</tr>
<tr>
<td>{a, b, c, e, f, h}</td>
<td>{a, b, c, e, f, h}</td>
</tr>
<tr>
<td>{a, b, c, g, h}</td>
<td>{a, b, c, g, h}</td>
</tr>
<tr>
<td>{e, f, g}</td>
<td>{d, g, h}</td>
</tr>
<tr>
<td>{d, e, f, h}</td>
<td>{d, e, f, h}</td>
</tr>
</tbody>
</table>
Circuits in graphs

- A circuit is the edge set of a cycle

<table>
<thead>
<tr>
<th>Graph</th>
<th>Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a, b, c, d}</td>
<td>{a, b, c, d}</td>
</tr>
<tr>
<td>{a, b, c, e, f, h}</td>
<td>{a, b, c, e, f, h}</td>
</tr>
<tr>
<td>{a, b, c, g, h}</td>
<td>{a, b, c, g, h}</td>
</tr>
<tr>
<td>{d, g, h}</td>
<td>{d, g, h}</td>
</tr>
<tr>
<td>{e, f, g}</td>
<td>{e, f, g}</td>
</tr>
<tr>
<td>{d, e, f, h}</td>
<td>{d, e, f, h}</td>
</tr>
</tbody>
</table>
Circuits in graphs

- A *circuit* is the edge set of a cycle

<table>
<thead>
<tr>
<th>Graph</th>
<th>Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a, b, c, d}</td>
<td>{a, b, c, d}</td>
</tr>
<tr>
<td>{a, b, c, e, f, h}</td>
<td>{a, b, c, e, f, h}</td>
</tr>
<tr>
<td>{a, b, c, g, h}</td>
<td>{a, b, c, g, h}</td>
</tr>
<tr>
<td>{d, g, h}</td>
<td>{d, g, h}</td>
</tr>
<tr>
<td>{e, f, g}</td>
<td>{e, f, g}</td>
</tr>
<tr>
<td>{d, e, f, h}</td>
<td>{d, e, f, h}</td>
</tr>
</tbody>
</table>
Question: When do two graphs have the same set of circuits?
When do two graphs have the same set of circuits?

- splitting cut vertices,
- gluing on a vertex does not change the circuits
When do two graphs have the same set of circuits?

- flipping on a 2-separation
When do two graphs have the same set of circuits?

- flipping on a 2-separation does not change the circuits
When do two graphs have the same set of circuits?

Theorem (Whitney, 1933)

Two graphs G and H have the same set of circuits if and only if G and H are isomorphic up to

- splitting or gluing cut vertices
- Whitney flips on a 2-separation
When do two biased graphs have the same set of circuits?

Theorem (DeVos, F., Goddyn, Pivotto)

When G is 3-connected, the circuits of (G, B) are uniquely determined by (G, B), unless (G, B) is in one of a few exceptional families.
Circuits in graphs

Given a collection of subsets C of a set E, is there a graph with these as its circuits? If so, call (E, C) graphic.

<table>
<thead>
<tr>
<th>Graph</th>
<th>Circuits?</th>
</tr>
</thead>
<tbody>
<tr>
<td>${a, b, c}$</td>
<td></td>
</tr>
<tr>
<td>${a, b, d}$</td>
<td></td>
</tr>
<tr>
<td>${a, c, d}$</td>
<td></td>
</tr>
<tr>
<td>${b, c, d}$</td>
<td></td>
</tr>
</tbody>
</table>
Circuits in graphs

\[E = \{ a, b, c, d \} \]

<table>
<thead>
<tr>
<th>Graph</th>
<th>Circuits?</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a, b, c}</td>
<td></td>
</tr>
<tr>
<td>{a, b, d}</td>
<td></td>
</tr>
<tr>
<td>{a, c, d}</td>
<td></td>
</tr>
<tr>
<td>{b, c, d}</td>
<td></td>
</tr>
</tbody>
</table>
Circuits in graphs

\[E = \{a, b, c, d\} \]
Circuits in graphs

\[E = \{a, b, c, d\} \]
Circuits in graphs

\[E = \{a, b, c, d\} \]

<table>
<thead>
<tr>
<th>Graph</th>
<th>Circuits?</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Graph with vertices a, b, c, d and edges a-b, b-c, c-d]</td>
<td>![Red X]</td>
</tr>
</tbody>
</table>

- \{a, b, c\}
- \{a, b, d\}
- \{a, c, d\}
- \{b, c, d\}
Question: When is a collection of subsets the set of circuits of a graph?

Theorem (Tutte, 1959)

A collection C of subsets of a ground set E is graphic if and only if

- C satisfies three certain properties and
- C does not have any one of five certain minors.
Three properties of circuits

- no circuit is properly contained in another
Three properties of circuits

- no circuit is properly contained in another
Three properties of circuits

- if \(e \in C_1 \cap C_2 \), then there is another circuit contained in \((C_1 \cup C_2) - e \)
Three properties of circuits

- if $e \in C_1 \cap C_2$, then there is another circuit contained in $(C_1 \cup C_2) - e$
Three properties of circuits

- if $e \in C_1 \cap C_2$, then there is another circuit contained in $(C_1 \cup C_2) - e$
Three properties of circuits

- the circuit elimination axiom
Three properties of circuits

- \emptyset is not a circuit
Three properties of circuits

- \emptyset is not a circuit
- no circuit is properly contained in another
- the *circuit elimination axiom*
Abstracting circuits: Matroids

Let $E = \{e_1, e_2, \ldots, e_m\}$ be a set

Let C be a collection of subsets of E, called circuits, such that

- \emptyset is not a circuit
- no circuit is properly contained in another
- the circuit elimination axiom holds

Such a pair (E, C) is called a matroid
Example: Uniform matroids

\[U_{r,n} \]

- ground set \{1, \ldots, n\}
- circuits are all subsets of size \(r + 1 \)
Example: Uniform matroids

\(U_{r,n} \)
- ground set \(\{1, \ldots, n\} \)
- circuits are all subsets of size \(r + 1 \)
 - circuit properties hold?
 - \(\emptyset \) not a circuit
 - no circuit properly contained in another
 - circuit elimination
Example: Uniform matroids

\[U_{r,n} \]

- ground set \(\{1, \ldots, n\} \)
- circuits are all subsets of size \(r + 1 \)

- circuit properties hold?
 - \(\emptyset \) not a circuit
 - no circuit properly contained in another
 - circuit elimination

\begin{center}
\includegraphics[width=\textwidth]{example_matroid_diagram.png}
\end{center}
Example: Uniform matroids

\(U_{r,n} \)

- ground set \(\{1, \ldots, n\} \)
- circuits are all subsets of size \(r + 1 \)

- circuit properties hold?
 - \(\emptyset \) not a circuit
 - no circuit properly contained in another
 - circuit elimination

\[C_1 \supseteq C_2 \]

\(e \)

D. Funk SFU
Example: Uniform matroids

$U_{r,n}$

- ground set $\{1, \ldots, n\}$
- circuits are all subsets of size $r + 1$

- circuit properties hold?
 - \emptyset not a circuit
 - no circuit properly contained in another
 - circuit elimination
Example: Uniform matroids

$U_{r,n}$

- ground set $\{1, \ldots, n\}$
- circuits are all subsets of size $r + 1$

- circuit properties hold?
 - \emptyset not a circuit
 - no circuit properly contained in another
 - circuit elimination
Example: Uniform matroids

$U_{r,n}$

- ground set $\{1, \ldots, n\}$
- circuits are all subsets of size $r + 1$

- $U_{1,n}$ is graphic

$n = 6$
Example: Uniform matroids

$U_{r,n}$

- ground set $\{1, \ldots, n\}$
- circuits are all subsets of size $r + 1$

- $U_{2,3}$ is graphic
Example: a non-graphic matroid

$U_{r,n}$

- ground set \{1, \ldots, n\}
- circuits are all subsets of size $r + 1$

- $U_{2,4}$ is not graphic
Example: a non-graphic matroid

\[U_{r,n} \]
- ground set \(\{1, \ldots, n\}\)
- circuits are all subsets of size \(r + 1\)

- \(U_{2,4}\) is not graphic

Put \(E = \{a, b, c, d\}\)

<table>
<thead>
<tr>
<th>Graph</th>
<th>Circuits?</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a, b, c}</td>
<td></td>
</tr>
<tr>
<td>{a, b, d}</td>
<td></td>
</tr>
<tr>
<td>{a, c, d}</td>
<td></td>
</tr>
<tr>
<td>{b, c, d}</td>
<td></td>
</tr>
</tbody>
</table>
Example: a non-graphic matroid

$U_{r,n}$
- ground set $\{1, \ldots, n\}$
- circuits are all subsets of size $r + 1$

- $U_{2,4}$ is not graphic

Put $E = \{a, b, c, d\}$
When is C the set of circuits of a graph?

Theorem (Tutte)

A matroid (E, C) is graphic if and only if it does not have any one of five certain minors.
When is C the set of circuits of a graph?

Theorem (Tutte)

A matroid (E, C) is graphic if and only if it does not have any one of five certain minors.

- a *minor* of (E, C) is any matroid obtained by a sequence of deletions or contractions
When is C the set of circuits of a graph?

- **deletion** and **contraction** of an element from the ground set of a matroid (E, C) is defined just as for graphs.

\[G \xrightarrow{e} G \setminus e \]
When is \(C \) the set of circuits of a graph?

- deletion and contraction of an element from the ground set of a matroid \((E, C) \) is defined just as for graphs.
When is C the set of circuits of a graph?

An excluded minor theorem characterises a family of matroids by exhibiting a list

- Matroid \in Family \iff no minor in list
- members of the list are the excluded minors for the family

Theorem (Wagner/Kuratowski)
A graph can be embedded in the plane if and only if it has no K_5 or $K_{3,3}$ as a minor.
When is C the set of circuits of a graph?

An *excluded minor theorem* characterises a family of matroids by exhibiting a list

- Matroid \in Family \iff no minor in list

- members of the list are the *excluded minors* for the family

Theorem (Wagner/Kuratowski)

A graph can be embedded in the plane if and only if it has no K_5 or $K_{3,3}$ as a minor.
When is C the set of circuits of a graph?

Theorem (Tutte)

A matroid (E, C) is graphic if and only if it has no $U_{2,4}$, F_7, F_7^*, $M^*(K_5)$, or $M^*(K_{3,3})$ minor.
Biased graphs

A biased graph is a pair \((G, B)\)

- a graph \(G\)
- together with a collection of distinguished cycles \(B\)
 - called balanced
Biased graphs

A biased graph is a pair \((G, \mathcal{B})\)

- a graph \(G\)
- together with a collection of distinguished cycles \(\mathcal{B}\)
 - called balanced
 - obeying the theta property

\begin{center}
\begin{tikzpicture}
 \foreach \x in {0,360/10,...,360}
 \draw (\x:1.5cm) -- (\x + 180:1.5cm);
 \foreach \x in {0,360/10,...,360}
 \draw (\x:1.25cm) -- (\x + 360/5:1.25cm);
\end{tikzpicture}
\end{center}

cannot contain exactly two balanced cycles
Example: Graphs on surfaces

Given a graph embedded on a surface

- put $\mathcal{B} = \{\text{contractible cycles}\}$
Example: Signed graphs

Given a graph

- label each edge with $+1$ or -1
- put $\mathcal{B} = \{\text{cycles with even } \# \text{ of edges labelled } -1\}$
Example: Signed graphs

Given a graph

- label each edge with +1 or −1
- put $\mathcal{B} = \{\text{cycles with even \# of edges labelled } -1\}$

- giving every edge label -1 we get $\mathcal{B} = \{\text{even cycles}\}$
Graphs are biased graphs

- put $\mathcal{B} = \{ \text{all cycles} \}$
Circuits in biased graphs

Given biased graph \((G, \mathcal{B})\), let \(C\) consist of

- balanced cycles
- every subdivision of one of the following, in which all cycles are unbalanced

- tight handcuffs
- loose handcuffs
- odd theta

- this choice for \(C\) satisfies our circuit properties
 - so \((E, C)\) is a matroid
Frame Matroids

Given biased graph \((G, \mathcal{B})\), let \(C\) consist of

- balanced cycles
- every subdivision of one of the following, in which all cycles are unbalanced
 - tight handcuffs
 - loose handcuffs
 - odd theta

- this choice for \(C\) satisfies our circuit properties
 - \((E, C) = M(G, \mathcal{B})\) is a bias or frame matroid
$U_{2,4}$ is frame

\[a \rightarrow b \rightarrow c \rightarrow d \]

\[C = \{abc, abd, acd, bcd\} \]
$U_{2,4}$ is frame

- there are three biased graphs whose circuits are the circuits of $U_{2,4}$

\[C = \{abc, abd, acd, bcd\} \]

- all cycles unbalanced
\(U_{2,4} \) is frame

\[
\begin{align*}
\mathcal{C} &= \{abc, abd, acd, bcd\} \\
\text{• there are three biased graphs whose circuits are the circuits of} \\
U_{2,4}
\end{align*}
\]

- all cycles unbalanced

D. Funk

SFU
$U_{2,4}$ is frame

- tight handcuffs
- loose handcuffs
- odd theta

\[C = \{abc, abd, acd, bcd\} \]

- there are three biased graphs whose circuits are the circuits of $U_{2,4}$

- all cycles unbalanced

D. Funk
SFU
When do two biased graphs have the same collection of circuits?
When do two biased graphs have the same collection of circuits?

Theorem (DeVos, F., Goddyn, Pivotto)

When G is 3-connected, $M(G, \mathcal{B})$ are uniquely determined by (G, \mathcal{B}), unless (G, \mathcal{B}) is in one of a few exceptional families.
When do two biased graphs have the same collection of circuits?

Theorem (DeVos, F., Goddyn, Pivotto)

When G is 3-connected, $M(G, B)$ are uniquely determined by (G, B), unless (G, B) is in one of a few exceptional families.

- When can the circuits of a biased graph be realised as the set of circuits of a graph?
Which frame matroids are graphic?

- i.e., which biased graphs have circuits = the circuits of a graph?
When can the circuits of a biased graph be realised as the set of circuits of a graph?

Theorem

A connected frame matroid \((E, C) = M(G, B)\) is graphic if and only if \((G, B)\) is in one of five families of biased graphs.

Another characterization has been obtained by Zaslavsky [1987] and Slilaty [2006], in terms of 1,2,3-sums of balanced and projective planar signed graphs.
Which biased graphs have circuits = the circuits of a graph?

When \((G, B)\) is balanced

- i.e. \(B = \{\text{all cycles}\}\)
- i.e. \((G, B)\) is a graph
Which biased graphs have circuits = the circuits of a graph?

When \((G, B)\) is a \textit{pinch}
Which biased graphs have circuits = the circuits of a graph?

When \((G, \mathcal{B})\) is a pinch

\[
\begin{array}{c|c}
\text{graph} & \text{biased graph} \\
\hline
\text{balanced} & \text{handcuffs} & \text{odd theta} \\
\end{array}
\]
Which biased graphs have circuits = the circuits of a graph?

When \((G, B)\) is a pinch

\begin{align*}
\text{graph} & \quad \text{biased graph} \\
\begin{array}{c}
\begin{tikzpicture}
\draw[fill=black] (0,0) circle (0.1cm);
\draw[fill=black] (1,0) circle (0.1cm);
\draw[-,red] (0,0) -- (1,0);
\draw[-,black] (0,0) -- (0,1);
\draw[-,black] (0,0) -- (0,-1);
\draw[-,black] (1,0) -- (1,1);
\draw[-,black] (1,0) -- (1,-1);
\end{tikzpicture}
\end{array}
\end{align*}

\text{balanced} \quad \text{handcuffs} \quad \text{odd theta}
Which biased graphs have circuits = the circuits of a graph?

When \((G, \mathcal{B})\) is a pinch

\[
\begin{align*}
\text{graph} & \quad \approx \quad \text{biased graph} \\
\begin{tikzpicture}[scale=0.8]
\draw[very thick] (-1,0) -- (1,0);
\node at (-1,0) [circle,fill,inner sep=2pt] (u) {};
\node at (1,0) [circle,fill,inner sep=2pt] (v) {};
\end{tikzpicture}
\end{align*}
\]
Which biased graphs have circuits = the circuits of a graph?

When \((G, B)\) is a \textit{bud}

- a signed graph: marked edges are labelled \(-1\)
Which biased graphs have circuits = the circuits of a graph?

When \((G, B)\) is a \textit{bud}

\[
\begin{array}{c|c}
\text{graph} & \text{biased graph} \\
\hline
\text{bal} & \text{bal} \\
\text{un} & \text{un}
\end{array}
\]
Which biased graphs have circuits = the circuits of a graph?

When \((G, \mathcal{B})\) is a \textit{bud}

\[
\begin{array}{c|c}
\text{graph} & \text{biased graph} \\
\hline
\text{bal} & \text{bal} \\
\end{array}
\]
Which biased graphs have circuits = the circuits of a graph?

When \((G, \mathcal{B})\) is a *bud*

\[
\begin{array}{l}
\text{graph} & \text{biased graph} \\
\hline
\text{bal} & \text{bal} \\
\Rightarrow & \Rightarrow \\
\text{balanced} & \\
\text{handcuffs} & \\
\text{odd theta} &
\end{array}
\]
Which biased graphs have circuits = the circuits of a graph?

When \((G, B)\) a 4-leaf clover [Shih, 1982]
- a signed graph: marked edges are labelled \(-1\)

![Diagram of a 4-leaf clover graph](image-url)
A 4-leaf clover

biased graph

graph

A B
CD
A B C D
x y z
xA yA zA
xB yB zB
xC yC zC
xD yD zD

D. Funk
SFU
A 4-leaf clover

biased graph

graph

D. Funk
SFU
A 4-leaf clover

biased graph

graph

balanced handcuffs odd theta

D. Funk SFU
A 4-leaf clover

biased graph

graph

D. Funk SFU
A 4-leaf clover

biased graph

graph

balanced
handcuffs
odd theta

D. Funk SFU
Which biased graphs have circuits = the circuits of a graph?

When \((G, B)\) is a fat theta

- cycles are balanced if and only if contained in a single “lobe”
Which biased graphs have circuits = the circuits of a graph?

When \((G, B)\) is a fat theta

- cycles are balanced if and only if contained in a single “lobe”
Which biased graphs have circuits = the circuits of a graph?

When \((G, \mathcal{B})\) is a fat theta

- cycles are balanced if and only if contained in a single “lobe”
Which biased graphs have circuits = the circuits of a graph?

Theorem
A connected frame matroid \((E, C) = M(G, B)\) is graphic if and only if \((G, B)\) is:

1. balanced,
2. a pinch,
3. a bud,
4. a 4-leaf clover, or
5. a fat theta.
A fat theta is balanced is a bud is a pinch
A fat theta is balanced is a bud is a pinch
A fat theta is balanced is a bud is a pinch
A fat theta is balanced is a bud is a pinch
A fat theta is balanced is a bud is a pinch

balanced
handcuffs
odd theta

D. Funk SFU
When do two biased graphs have the same set of circuits?

Theorem (DeVos, F., Goddyn, Pivotto)

When G is 3-connected, $M = M(G, B)$ is uniquely represented by (G, B), unless (G, B) is in one of a few exceptional families.

Furthermore, we know the few exceptions, and their few different biased graph representations.
• a matroid \((E, C)\) is *connected* if every pair \(e_1, e_2 \in E\) are contained in some circuit
Definition

If $e \notin X$

then $e \in \text{closure}(X)$
Hyperplanes in graphs

- complements of minimal cuts S' are hyperplanes
- maximal unions of circuits subject to $\text{closure}(X) \neq E$
When do two biased graphs have the same set of circuits?

Theorem (DeVos, F., Goddyn, Pivotto)

When \(G \) is 3-connected, \(M = M(G, \mathcal{B}) \) is uniquely represented by \((G, \mathcal{B})\), unless \((G, \mathcal{B})\) is in one of a few exceptional families.
When do two biased graphs have the same set of circuits?

Theorem (DeVos, F., Goddyn, Pivotto)

When G is 3-connected, $M = M(G, \mathcal{B})$ is uniquely represented by (G, \mathcal{B}), unless (G, \mathcal{B}) is in one of a few exceptional families.

Strategy

- $M(G, \mathcal{B})$ has $n - 1$ connected, non-graphic hyperplanes

$\implies (G, \mathcal{B})$ uniquely represents $M(G, \mathcal{B})$
When do two biased graphs have the same set of circuits?

Theorem (DeVos, F., Goddyn, Pivotto)

When G is 3-connected, $M = M(G, \mathcal{B})$ is uniquely represented by (G, \mathcal{B}), unless (G, \mathcal{B}) is in one of a few exceptional families.

Strategy

- $M(G, \mathcal{B})$ has $n - 1$ connected, non-graphic hyperplanes
 \[\implies (G, \mathcal{B})\text{ uniquely represents } M(G, \mathcal{B})\]
- otherwise, there are $u, v \in V(G)$ such that
 - $G - u$ and $G - v$ are each graphic
When do two biased graphs have the same set of circuits?

• Each of $G - u$ and $G - v$ is one of:
 1. balanced,
 2. a pinch,
 3. a bud,
 4. a 4-leaf clover, or
 5. a fat theta.

• for each pair, re-construct G
The Bean bag family

- $G - u$ balanced, $G - v$ graphic
The Bean bag family

- $G - u$ balanced, $G - v$ graphic

D. Funk SFU
The Bean bag family

- $G - u$ balanced, $G - v$ graphic
The Bean bag family

- $G - u$ balanced, $G - v$ graphic
The Bean bag family

- \(G - u \) balanced, \(G - v \) graphic
The Bean bag family

- $G - u$ balanced, $G - v$ graphic
The Bean bag family

- $G - u$ balanced, $G - v$ graphic
The Bat graph family

- If \(G - u \) pinched at \(v \), and \(G - v \) pinched at \(u \)
The Bat graph family

- If $G - u$ pinched at v, and $G - v$ pinched at u
The Bat graph family

- If $G - u$ pinched at v, and $G - v$ pinched at u
The Bat graph family

- If $G - u$ pinched at v, and $G - v$ pinched at u:
The Bat graph family

- If $G - u$ pinched at v, and $G - v$ pinched at u:

![Diagram showing the Bat graph family](image)
The Bat graph family

- If $G - u$ pinched at v, and $G - v$ pinched at u:

$$
\begin{array}{c}
A \quad B \\
C \quad D
\end{array}
\quad \leftrightarrow
\begin{array}{c}
A \quad B \\
C \quad D
\end{array}
$$
The Bat graph family

- If \(G - u \) pinched at \(v \), and \(G - v \) pinched at \(u \):
When do two biased graphs have the same set of circuits?

And so on...
- each of $G - u$ and $G - v$ is one of:
 1. balanced,
 2. a pinch,
 3. a bud,
 4. a 4-leaf clover, or
 5. a fat theta.
- for each pair, re-construct G
Open

Can we assume only $M = M(G, B)$ 3-connected?
- i.e., find all biased graph representations of a given 3-connected frame matroid
Can we assume only $M = M(G, B)$ 3-connected?

- *i.e.*, find all biased graph representations of a given 3-connected frame matroid

- each of $G - u$ and $G - v$ is one of:
 1. disconnected
 2. balanced,
 3. a pinch,
 4. a bud,
 5. a 4-leaf clover, or
 6. a fat theta.

- for each pair, re-construct G
When is \mathcal{C} the set of circuits of a graph?

- **Answer:** Tutte’s excluded minor characterisation

Theorem (Tutte)

A matroid (E, \mathcal{C}) is graphic if and only if it has no $U_{2,4}$, F_7, F_7^, $M^*(K_5)$, or $M^*(K_{3,3})$ minor.*
Open

When is \mathcal{C} the set of circuits of a biased graph?

The Theorem we’d like
A matroid (E, \mathcal{C}) is frame if and only if it has no minor in the list \{\(N, N', \ldots, N''\ldots\}\).
When is C the set of circuits of a biased graph?

The Theorem we’d like
A matroid (E, C) is frame if and only if it has no minor in the list \{\(N, N', \ldots, N''\ldots\)\}.

- Let N be an excluded minor for the class of frame matroids, let $e, f \in E$
 - consider $N \setminus e$ and $N \setminus f$
 - if we know all biased graphs representing $N \setminus e$ and $N \setminus f$ we should be able to reconstruct N