Define a matrix A to be simple if it is a $(0,1)$-matrix with no repeated columns. Given a matrix F, we say A has no configuration F if there is no submatrix of A which is a row and column permutation of F. Given m and a family \mathcal{F} of forbidden configurations, we seek an upper bound $\text{forb}(m, \mathcal{F})$ on the number of columns in an m-rowed simple matrix which has no configuration in \mathcal{F}.

A conjecture of Anstee and Sali predicts the asymptotics of $\text{forb}(m, \mathcal{F})$ when $|\mathcal{F}| = 1$. We consider $|\mathcal{F}| > 1$. (C. Koch, M. Raggi and A. Sali).