< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

# An Eberhard-like theorem for pentagons and heptagons

## Robert Šámal

#### joint work with M. DeVos, A. Georgakopoulos, B. Mohar

Charles University, Prague Simon Fraser University, Burnaby

CanaDAM — May 26, 2009

## Euler formula

- Let G be a cubic plane graph,
- $p_k \ldots$  number of its *k*-gonal faces.
- Euler's formula implies:

$$\sum_{k\geq 3}(6-k)p_k=12.$$

#### Question

For which sequences  $(p_k)_{k\geq 3}$  satisfying the above exists a cubic plane graph G whose face lengths are given by the sequence  $(p_k)$ ?

... such sequence is called realizable

## Euler formula

- Let G be a cubic plane graph,
- $p_k \ldots$  number of its *k*-gonal faces.
- Euler's formula implies:

$$\sum_{k\geq 3}(6-k)p_k=12.$$

#### Question

For which sequences  $(p_k)_{k\geq 3}$  satisfying the above exists a cubic plane graph G whose face lengths are given by the sequence  $(p_k)$ ?

... such sequence is called realizable

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

## Not easy ...

### Theorem (B. Grünbaum, Convex polytopes, 1967)

- $p_4 = 6$ ,  $p_6 \in \mathbb{N}$ , all other  $p_i = 0 \dots$  realizable iff  $p_6 \neq 1$ .
- $p_5 = 12$ ,  $p_6 \in \mathbb{N}$ , all other  $p_i = 0 \dots$  realizable iff  $p_6 \neq 1$ .
- $p_3 = 4$ ,  $p_6 \in \mathbb{N}$ , all other  $p_i = 0$  ... realizable iff  $p_6$  is even.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Adding hexagons

#### Theorem (Eberhard, 1891)

For every finite sequence  $(p_k)_{k\neq 6}$  of non-negative integers satisfying Euler's condition, there are infinitely many values  $p_6$ such that there exists a simple convex polyhedron having precisely  $p_k$  faces of length k for every  $k \ge 3$ .

(Simpler and complete proof in [B. Grünbaum, Convex polytopes, 1967] – using graphs instead of polyhedra.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Main theorem

- want to understand better, what sequences are realizable
- modification: instead of adding hexagons we are adding  $C_5$ 's and  $C_7$ 's.
- if we add the same number of  $C_5$ 's and  $C_7$ 's, the equation  $\sum_{k\geq 3}(6-k)p_k = 12$  remains valid.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Main theorem

- want to understand better, what sequences are realizable
- modification: instead of adding hexagons we are adding *C*<sub>5</sub>'s and *C*<sub>7</sub>'s.
- if we add the same number of  $C_5$ 's and  $C_7$ 's, the equation  $\sum_{k\geq 3}(6-k)p_k = 12$  remains valid.

Open problem

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

## Main theorem – plane

## Theorem (DeVos, Georgakopoulos, Mohar, Š., 2009)

Let  $(p_k)$  be a finite sequence of non-negative integers satisfying the Euler condition. Then there exist infinitely many integers n such that after increasing  $p_5$  and  $p_7$  by n we obtain a realizable sequence.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

## Main theorem – general surface

## Theorem (DeVos, Georgakopoulos, Mohar, Š., 2009)

Let  $(p_k)_{k \neq 5,7}$  be a finite sequence of non-negative integers, let S be a closed surface, and let w be a positive integer. Then there exist infinitely many pairs of integers  $p_5$  and  $p_7$  such that there is a 3-connected map realizing S, with face-width at least w, having precisely  $p_k$  faces of length k.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

## Triarcs



• a useful planar cubic graph

## Triarcs



 generalization: planar graph, vertices of degree 3 and 2 (degree 2 are on the boundary, "every other one, plus three").

## **Basic triarcs**



#### • example: a (2,2,4)-triarc

 this can be modified by using *n*-gon instead of pentagon and obtaining any (*a*, *b*, *c*)-triarc with *a* + *b* + *c* = *n* + 3.
 Such construction, with *a* = *b* being even will be called *basic triarc*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

## **Basic triarcs**



- example: a (2, 2, 4)-triarc
- this can be modified by using *n*-gon instead of pentagon and obtaining any (*a*, *b*, *c*)-triarc with *a* + *b* + *c* = *n* + 3.
   Such construction, with *a* = *b* being even will be called *basic triarc*.

Open problem

# Glueing triarcs together



- two triarcs and several hexagons can be glued to a larger triarc (provided the indicated sides are of even size)
- hexagonal "tiles" can be replaced by ones using only 5-gons and 7-gons:



・ コット (雪) ( 小田) ( コット 日)

# Glueing triarcs together



- two triarcs and several hexagons can be glued to a larger triarc (provided the indicated sides are of even size)
- hexagonal "tiles" can be replaced by ones using only 5-gons and 7-gons:



・ コット (雪) ( 小田) ( コット 日)

- make basic triarcs and glue them all together
- enlarge the obtained triarcs (by adding triarcs with only 5-gons and 7-gons) to get a (n, n, n)-triarc T with n = 24k + 8 (for some k).
- make another (n, n, n)-triarc R using only 5- and 7-gons.
- glue *R* and *T* together using the following gadget:



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- make basic triarcs and glue them all together
- enlarge the obtained triarcs (by adding triarcs with only 5-gons and 7-gons) to get a (n, n, n)-triarc T with n = 24k + 8 (for some k).
- make another (n, n, n)-triarc R using only 5- and 7-gons.
  glue R and T together using the following gadget:



- make basic triarcs and glue them all together
- enlarge the obtained triarcs (by adding triarcs with only 5-gons and 7-gons) to get a (n, n, n)-triarc T with n = 24k + 8 (for some k).
- make another (n, n, n)-triarc R using only 5- and 7-gons.
- glue *R* and *T* together using the following gadget:

- make basic triarcs and glue them all together
- enlarge the obtained triarcs (by adding triarcs with only 5-gons and 7-gons) to get a (n, n, n)-triarc T with n = 24k + 8 (for some k).
- make another (n, n, n)-triarc R using only 5- and 7-gons.
- glue R and T together using the following gadget:



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Extending the result: nonplanar graphs

 make two extra triarcs for each handle we need to add (one extra triarc for each crosscap) as follows:



・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

E 990

# Extending ... adding handles

## • we identify two "auxiliary hexagons":



• ... this doesn't quite work (4-regular vertices)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Extending ... adding handles

## • we identify two "auxiliary hexagons":



• ... this doesn't quite work (4-regular vertices)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Extending ... adding handles

## • we identify two "auxiliary hexagons":



• ... this doesn't quite work (4-regular vertices)

# Extending ... adding handles

#### "shift" one of the hexagons



- ... this doesn't work either (we can't add 6-gons, 8-gons)
- contract and uncontract the red edges!

# Extending ... adding handles



- ... this doesn't work either (we can't add 6-gons, 8-gons)
- contract and uncontract the red edges!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# Extending ... adding handles



- ... this doesn't work either (we can't add 6-gons, 8-gons)
- o contract and uncontract the red edges!

Our results

Proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

# Extending ... adding handles



・ロン ・ 四 と ・ 回 と ・ 回 と

3

# Extending ... adding crosscaps

 we add the following gadget for each crosscap, then identify the hexagon in it with an auxiliary hexagon we built in the graph.



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

# Extending ... adding crosscaps

 we add the following gadget for each crosscap, then identify the hexagon in it with an auxiliary hexagon we built in the graph.



# Extending ... achieving large face-width

- To make a graph with prescribed face-lengths and large face-with, we modify the above construction.
- We do "the same" but with auxiliary 6*N*-gons instead of 6-gons. (For *N* sufficiently large and odd.)

# Extending ... achieving large face-width

- To make a graph with prescribed face-lengths and large face-with, we modify the above construction.
- We do "the same" but with auxiliary 6*N*-gons instead of 6-gons. (For *N* sufficiently large and odd.)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

# Future work: Not all is possible

#### Theorem (Jendrol', Jucovic 1972)

On the torus there is precisely one admissible sequence (namely  $p_5 = p_7 = 1$  and  $p_i = 0$  for  $i \notin \{5,7\}$ ), for which an Eberhard-type result with added hexagons does not hold. Explicitly: there is no cubic graph embedded on torus with one pentagon, one heptagon and the rest of hexagons.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

#### Question

#### Given:

• S — a closed surface S

•  $(p_k)$  — satisfies Euler's condition:  $\sum_{k\geq 3}(6-k)p_k = 6\chi(S)$ .

• 
$$(q_k)$$
 — is neutral:  $\sum_{k\geq 3}(6-k)q_k = 0$ .

Is it true (with finitely many exceptions (p, q)) that  $(\exists n \in \mathbb{N})$  such that p + nq is realizable in S?

(As mentioned above, if *S* is the torus then the list of exceptional pairs (p, q) cannot be empty.)