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Introduction Our results Proof Open problem

Euler formula

Let G be a cubic plane graph,
pk . . . number of its k -gonal faces.
Euler’s formula implies:∑

k≥3

(6− k)pk = 12.

Question
For which sequences (pk )k≥3 satisfying the above exists a
cubic plane graph G whose face lengths are given by the
sequence (pk )?

. . . such sequence is called realizable
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Not easy . . .

Theorem (B. Grünbaum, Convex polytopes, 1967)
p4 = 6, p6 ∈ N, all other pi = 0 . . . realizable iff p6 6= 1.
p5 = 12, p6 ∈ N, all other pi = 0 . . . realizable iff p6 6= 1.
p3 = 4, p6 ∈ N, all other pi = 0 . . . realizable iff p6 is even.
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Adding hexagons

Theorem (Eberhard, 1891)

For every finite sequence (pk )k 6=6 of non-negative integers
satisfying Euler’s condition, there are infinitely many values p6
such that there exists a simple convex polyhedron having
precisely pk faces of length k for every k ≥ 3.

(Simpler and complete proof in [B. Grünbaum, Convex
polytopes, 1967] – using graphs instead of polyhedra.)
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Main theorem

want to understand better, what sequences are realizable
modification: instead of adding hexagons we are adding
C5’s and C7’s.
if we add the same number of C5’s and C7’s, the equation∑

k≥3(6− k)pk = 12 remains valid.
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Main theorem – plane

Theorem (DeVos, Georgakopoulos, Mohar, Š., 2009)

Let (pk ) be a finite sequence of non-negative integers satisfying
the Euler condition. Then there exist infinitely many integers n
such that after increasing p5 and p7 by n we obtain a realizable
sequence.
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Main theorem – general surface

Theorem (DeVos, Georgakopoulos, Mohar, Š., 2009)

Let (pk )k 6=5,7 be a finite sequence of non-negative integers, let
S be a closed surface, and let w be a positive integer. Then
there exist infinitely many pairs of integers p5 and p7 such that
there is a 3-connected map realizing S, with face-width at least
w, having precisely pk faces of length k.
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Triarcs

a useful planar cubic graph
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Triarcs

generalization: planar graph, vertices of degree 3 and 2
(degree 2 are on the boundary, “every other one, plus
three”).
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Basic triarcs

example: a (2,2,4)-triarc
this can be modified by using n-gon instead of pentagon
and obtaining any (a,b, c)-triarc with a + b + c = n + 3.
Such construction, with a = b being even will be called
basic triarc.
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Glueing triarcs together

2m

2l

2m

2l

two triarcs and several hexagons can be glued to a larger
triarc (provided the indicated sides are of even size)
hexagonal “tiles” can be replaced by ones using only
5-gons and 7-gons:
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Finishing up

make basic triarcs and glue them all together
enlarge the obtained triarcs (by adding triarcs with only
5-gons and 7-gons) to get a (n,n,n)-triarc T with
n = 24k + 8 (for some k ).
make another (n,n,n)-triarc R using only 5- and 7-gons.
glue R and T together using the following gadget:
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Extending the result: nonplanar graphs

make two extra triarcs for each handle we need to add
(one extra triarc for each crosscap) as follows:
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Extending . . . adding handles

we identify two “auxiliary hexagons”:

. . . this doesn’t quite work (4-regular vertices)
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Extending . . . adding handles

“shift” one of the hexagons
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6

. . . this doesn’t work either (we can’t add 6-gons, 8-gons)
contract and uncontract the red edges!
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Extending . . . adding handles
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Extending . . . adding crosscaps

we add the following gadget for each crosscap, then
identify the hexagon in it with an auxiliary hexagon we built
in the graph.

6

5

7

5

7

5

7

5

6

5

5

5
55

a

b

c

d

e

f a b

c

d

e

f



Introduction Our results Proof Open problem

Extending . . . adding crosscaps

we add the following gadget for each crosscap, then
identify the hexagon in it with an auxiliary hexagon we built
in the graph.

6

5

7

5

7

5

7

5

6

5

5

5
55

a

b

c

d

e

f a b

c

d

e

f



Introduction Our results Proof Open problem

Extending . . . achieving large face-width

To make a graph with prescribed face-lengths and large
face-with, we modify the above construction.
We do “the same” but with auxiliary 6N-gons instead of
6-gons. (For N sufficiently large and odd.)
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Future work: Not all is possible

Theorem (Jendrol’,Jucovic 1972)
On the torus there is precisely one admissible sequence
(namely p5 = p7 = 1 and pi = 0 for i /∈ {5,7}), for which an
Eberhard-type result with added hexagons does not hold.
Explicitly: there is no cubic graph embedded on torus with one
pentagon, one heptagon and the rest of hexagons.
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Question
Given:

S — a closed surface S
(pk ) — satisfies Euler’s condition:

∑
k≥3(6− k)pk = 6χ(S).

(qk ) — is neutral:
∑

k≥3(6− k)qk = 0.
Is it true (with finitely many exceptions (p,q)) that

(∃n ∈ N) such that p + nq is realizable in S?

(As mentioned above, if S is the torus then the list of
exceptional pairs (p,q) cannot be empty.)
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