Epidemics in Communication Networks *

Joseph Peters School of Computing Science Simon Fraser University

* Joint work with F. Comellas, M. Mitjana, J. Ozón Universitat Politècnica de Catalunya

・ 同 ト ・ ヨ ト ・ ヨ ト

Small World Networks

- significant *clustering* or *locality* (neighbouring nodes have many common neighbours)
- small diameter or average distance between nodes

Examples

- Erdös numbers
- world wide web
- spread of contagious diseases
- neural network of flatworm
- electric power grids

・ 同 ト ・ ヨ ト ・ ヨ ト …

Probabilistic Model (Watts-Strogatz)

Consider each edge of a network and move one of its endpoints with probability p.

- $p = 0 \Rightarrow$ structured graphs
- $p = 1 \Rightarrow$ random graphs
- ▶ $p \approx .01 \Rightarrow$ small world networks

distance 20% of original graph clustering 95% of original graph

・ 同 ト ・ ヨ ト ・ ヨ ト

Initial Graph for Probabilistic Model

Notation

- network is G = (V, E) of order n = |V|
- maximum degree is Δ
- diameter is D_G or D
- clustering is a measure of the connectedness of a graph (definition later)

・ロト ・回ト ・ヨト ・ヨト

-2

Circulant Graphs

- ► $C_{n,\Delta}$, Δ even, is the circulant graph $C(n; 1, 2, \cdots, \frac{\Delta}{2})$
- n nodes labelled with integers modulo n
- Δ links per node, each node *i* adjacent to $i \pm 1, i \pm 2, \cdots, i \pm \frac{\Delta}{2} \pmod{n}$.

•
$$C_{n,\Delta}$$
 has diameter $D_{C_{n,\Delta}} = \left\lceil \frac{n-1}{\Delta} \right\rceil$.

イロト イポト イヨト

Example

Circulant graph $C_{n,\Delta}$ with n = 24 and $\Delta = 6$

・ロト ・回ト ・ヨト ・ヨト

-2

Deterministic Model

Choose *h* equally spaced nodes of $C_{n,\Delta}$ to be *hubs*. Interconnect the hubs using a second graph *H* to obtain $C_{n,\Delta,h}$. Subgraph of circulant between two hubs is a *segment*.

Diameter of Deterministic Model

Theorem The diameter of $C_{n,\Delta}$ can be reduced to D using a hub graph H with approximately $h = \frac{2n}{\Delta(D-D_H)}$ nodes.

Theorem When a graph H with h nodes and diameter D_H is used to interconnect h hubs of $C_{n,\Delta}$, the diameter is approximately $\frac{2n}{\Delta h} + D_H$. ($\frac{n}{\Delta h}$ is the maximum distance from any node of $C_{n,\Delta}$ to the nearest hub.)

Examples Consider $C_{n,\Delta}$ with n = 1000, $\Delta = 10$, $D_{C_{n,\Delta}} = 100$.

- ► To reduce the diameter to 34 requires 7 hubs (first theorem).
- With h = 4 hubs, the diameter is $50 + D_H$ (second theorem).

Hub Graphs

- ► K_h (complete graph): diameter 1 but increases degree of hubs by h - 1
- K_{1,h-1} (star graph): diameter 2, adds minimum number of edges, one hub has high degree
- C(n; a, b) (double-step graph): circulant graph with each node i adjacent to i ± a, i ± b (mod n), diameter is
 D = [^{-1+√2n-1}/₂] when a = D and b = D + 1, increases degree of hubs by 4

Examples of Hub Graphs

Complete, star, and double-step hub graphs with h = 13

Image: A match the second s

3 ×

Examples of Diameter with Hub Graphs

Consider $C_{n,\Delta}$ with n = 10,000, $\Delta = 10$, and $D_{C_{n,\Delta}} = 1000$. Using h = 50 hubs:

- K_{50} diameter 41, degree of hubs is 59
- ▶ *C*(50; 5, 6) − diameter 45, degree of hubs is 14

50 hubs is 0.5% of *n* but diameter decreases by factor of nearly 25 20 hubs are needed to decrease diameter by factor of 10

Clustering

For each node *i* of a graph *G*, let n_i be the number of neighbours of *i*. Let C_i be the fraction of the $\frac{n_i(n_i-1)}{2}$ possible edges among the neighbours of *i* that are present in *G*. The *clustering parameter* of *G*, C_G , is the average over all nodes *i* of C_i .

Theorem The clustering parameter of $C_{n,\Delta}$ is $C_{C_{n,\Delta}} = \frac{3(\Delta-2)}{4(\Delta-1)} \approx \frac{3}{4}.$

ロト 不得 トイヨト イヨト

Comparison of Probabilistic and Deterministic Models

Clustering and diameter for graphs based on $C_{1000,10}$

< 🗇 🕨 < 🖃 🕨

Epidemics

- Flu epidemic spreads to many people simultaneously but individuals remain contagious for a short time
- Aids epidemic spreads to one person at a time but individuals remain contagious for a long time

How can we model the infectiousness of a disease and how long an individual is contagious?

(4月) (1日) (日)

Broadcasting

Infectious diseases spread in a broadcast-like pattern.

- at time t = 0, an individual (originator) starts to spread the disease
- an individual (node) remains active (contagious) for A time units (rounds)
- ▶ an active node can infect $k \leq \Delta$ neighbours during each round
- ▶ an active node becomes permanently *inactive* after A rounds

Special Cases

- $A = \infty$ is normal broadcasting with a *k*-port model.
- A = 1 has been studied with probabilistic models.
- We will study A = 1 with a deterministic model.

Definitions

- $\mathcal{T}_{k,\mathcal{A}}(u)$: broadcast time for originating node u when
 - ► a node can infect k ≤ ∆ of its neighbours during each active time step
 - a node remains *active* for A rounds after infection

The broadcast time of graph G is $\mathcal{T}_{k,\mathcal{A}}(G) = \max\{\mathcal{T}_{k,\mathcal{A}}(u)|u \in V(G)\}.$ Simplify to $\mathcal{T}_k(u)$ and $\mathcal{T}_k(G)$ since only A = 1 is considered.

イロト イポト イヨト

Broadcast Time in $C_{n,\Delta}$

Lower Bound Diameter of $C_{n,\Delta}$, Δ even, is $\left\lceil \frac{n-1}{\Delta} \right\rceil$.

Theorem For $n \ge 2\Delta(\lceil \log_k \rceil - 1) + 2$

•
$$T_k(C_{n,\Delta}) = n-1$$
 if $k = 1$

•
$$\mathcal{T}_k(\mathcal{C}_{n,\Delta}) = \left\lceil \frac{n-1}{\Delta} \right\rceil$$
 if $2 \le k \le \Delta$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Sections of a Circulant

Proof Outline

- ▶ k = 1: one node active during each round $\implies n 1$ rounds
- k = Δ: spreading pattern is flooding, one section on each side of the originator per round
- $\frac{\Delta}{2} < k < \Delta$:
 - Round 1: originator infects farthest $\frac{k}{2}$ neighbours on each side
 - Round 2: infect remaining nodes in section on each side of originator and more than half of nodes in next section on each side
 - continue until round $\left\lceil \frac{n-1}{\Delta} \right\rceil$
- 2 ≤ k ≤ Δ/2: infect nodes in section on each side of originator in ⌈log_k Δ⌉ rounds and then flood for ⌈n-1/Δ⌉ − 1 more rounds to infect remaining sections giving T_k(C_{n,Δ}) ≤ ⌈log_k Δ⌉ + ⌈n-1/Δ⌉ − 1

Example for $\frac{\Delta}{2} < k < \Delta$

Optimal broadcast in $C_{n,\Delta}$ for n = 24, $\Delta = 6$, k = 4

イロト スピト メヨト ノヨ

Example for $2 \le k \le \frac{\Delta}{2}$

Broadcast in $C_{n,\Delta}$ for n = 24, $\Delta = 6$, k = 2, $\mathcal{A} = 1$,

Proof Outline for $2 \le k < \Delta$

- Round 1: originator infects farthest ^k/₂ neighbours in section on each side
- Round 2: infect the farthest $\frac{k^2}{2}$ nodes in next section on each side
- Continue to round $\alpha 1$ where $\alpha = \lceil \log_k \Delta \rceil$
- ► Round \(\alpha\): infect all nodes in section \(\alpha\) and some nodes in section \(\alpha\) 2
- ► Round α + 1: infect remaining nodes in section α − 1, all nodes in section α + 1, and some nodes in section α − 3
- ► Continue flooding in direction away from originator and filling in toward originator until round $2\alpha 1$

Segments of $C_{n,\Delta,h}$

Broadcasting in $C_{n,\Delta,h}$

Theorem $T_k(C_{n,\Delta,h}) \approx \frac{2n}{h\Delta} + D_H$ where

- H = C(h; a, b) (double-step graph)
- ► $3 \le k \le \frac{\Delta}{2}$
- $\Delta \geq$ 4, Δ even

Proof Outline

- ► First phase: originator sends message to nearest hub using chords of length ^A/₂ (approximately ⁿ/_h rounds worst case)
- ► Second phase: the informed hub broadcasts in the hub graph $H(D_H = \left\lceil \frac{-1 + \sqrt{2h-1}}{2} \right\rceil$ rounds)
- Third phase: each hub broadcasts to the two segments on either side of it (approximately ⁿ/_{bΔ} rounds)

Theorem $T_k(C_{n,\Delta,h}) \approx \frac{3n}{h\Delta} + D_H$, k = 2

Broadcast in Tile

Broadcast in a tile with k = 2

イロト イヨト イヨト イヨト

Broadcast in Modified Tile

Modified broadcast in a tile with k = 2

回 と く ヨ と く ヨ と

-2

Stopping the Infection

Theorem If no communications are lost, then all nodes of $C_{n,\Delta}$ will be infected for any $2 \le k \le \Delta$.

Proof Outline

- ► A/2 < k ≤ Δ: the infection spreads at the maximum possible rate (flooding) and it is impossible to leave uninfected gaps.</p>
- ► $2 \le k \le \frac{\Delta}{2}$:
 - permanently uninfected nodes must be permanently unreachable from all active nodes
 - try to construct two blocks of inactive (previously infected) nodes with isolated uninfected nodes between the blocks
 - ▶ blocks must contain at least A/2 nodes to prevent an active node from infecting an isolated node
 - two possible strategies (both fail)

Protection near Originator

Attempt to isolate uninfected nodes close to originator

・ロト ・回ト ・ヨト ・ヨト

Protection far from Originator

Attempts to isolate uninfected nodes far from originator

イロト イポト イヨト イヨト