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Small World Networks

I significant clustering or locality (neighbouring nodes have
many common neighbours)

I small diameter or average distance between nodes

Examples

I Erdös numbers

I world wide web

I spread of contagious diseases

I neural network of flatworm

I electric power grids
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Probabilistic Model (Watts-Strogatz)

Consider each edge of a network and move one of its endpoints
with probability p.

I p = 0 ⇒ structured graphs

I p = 1 ⇒ random graphs
I p ≈ .01 ⇒ small world networks

distance 20% of original graph
clustering 95% of original graph
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Initial Graph for Probabilistic Model

Joseph Peters Epidemics in Communication Networks



Introduction Deterministic Model Epidemics Stopping Epidemics

Notation

I network is G = (V ,E ) of order n = |V |
I maximum degree is ∆

I diameter is DG or D

I clustering is a measure of the connectedness of a graph
(definition later)
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Circulant Graphs

I Cn,∆, ∆ even, is the circulant graph C (n; 1, 2, · · · , ∆
2 )

I n nodes labelled with integers modulo n

I ∆ links per node, each node i adjacent to
i ± 1, i ± 2, · · · , i ± ∆

2 (mod n).

I Cn,∆ has diameter DCn,∆
=

⌈
n−1
∆

⌉
.
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Example
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Circulant graph Cn,∆ with n = 24 and ∆ = 6
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Deterministic Model
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Choose h equally spaced nodes of Cn,∆ to be hubs.
Interconnect the hubs using a second graph H to obtain Cn,∆,h.
Subgraph of circulant between two hubs is a segment.
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Diameter of Deterministic Model

Theorem The diameter of Cn,∆ can be reduced to D using a hub
graph H with approximately h = 2n

∆(D−DH) nodes.

Theorem When a graph H with h nodes and diameter DH is used
to interconnect h hubs of Cn,∆, the diameter is approximately
2n
∆h + DH . ( n

∆h is the maximum distance from any node of Cn,∆ to
the nearest hub.)

Examples Consider Cn,∆ with n = 1000, ∆ = 10, DCn,∆
= 100.

I To reduce the diameter to 34 requires 7 hubs (first theorem).

I With h = 4 hubs, the diameter is 50 + DH (second theorem).
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Hub Graphs

I Kh (complete graph): diameter 1 but increases degree of hubs
by h − 1

I K1,h−1 (star graph): diameter 2, adds minimum number of
edges, one hub has high degree

I C (n; a, b) (double-step graph): circulant graph with each
node i adjacent to i ± a, i ± b (mod n), diameter is

D =
⌈
−1+

√
2n−1

2

⌉
when a = D and b = D + 1, increases

degree of hubs by 4
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Examples of Hub Graphs

Complete, star, and double-step hub graphs with h = 13
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Examples of Diameter with Hub Graphs

Consider Cn,∆ with n = 10, 000, ∆ = 10, and DCn,∆
= 1000. Using

h = 50 hubs:

I K50 – diameter 41, degree of hubs is 59

I C (50; 5, 6) – diameter 45, degree of hubs is 14

50 hubs is 0.5% of n but diameter decreases by factor of nearly 25
20 hubs are needed to decrease diameter by factor of 10
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Clustering

For each node i of a graph G , let ni be the number of neighbours
of i . Let Ci be the fraction of the ni (ni−1)

2 possible edges among
the neighbours of i that are present in G . The clustering
parameter of G , CG , is the average over all nodes i of Ci .

Theorem The clustering parameter of Cn,∆ is

CCn,∆
= 3(∆−2)

4(∆−1) ≈
3
4 .
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Comparison of Probabilistic and Deterministic Models

0

0.25

0.5

0.75

1

 

0.0001 0.001 0.01 0.1 1
p

diameter star

diameter numerical

diameter double loop

clustering numerical

clustering double loop

Clustering and diameter for graphs based on C1000,10
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Epidemics

I Flu epidemic - spreads to many people simultaneously but
individuals remain contagious for a short time

I Aids epidemic - spreads to one person at a time but
individuals remain contagious for a long time

How can we model the infectiousness of a disease and how long an
individual is contagious?
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Broadcasting

Infectious diseases spread in a broadcast-like pattern.

I at time t = 0, an individual (originator) starts to spread the
disease

I an individual (node) remains active (contagious) for A time
units (rounds)

I an active node can infect k ≤ ∆ neighbours during each round

I an active node becomes permanently inactive after A rounds

Special Cases

I A = ∞ is normal broadcasting with a k-port model.

I A = 1 has been studied with probabilistic models.

I We will study A = 1 with a deterministic model.
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Definitions

Tk,A(u): broadcast time for originating node u when

I a node can infect k ≤ ∆ of its neighbours during each active
time step

I a node remains active for A rounds after infection

The broadcast time of graph G is
Tk,A(G ) = max{Tk,A(u)|u ∈ V (G )}.
Simplify to Tk(u) and Tk(G ) since only A = 1 is considered.
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Broadcast Time in Cn,∆

Lower Bound Diameter of Cn,∆, ∆ even, is
⌈

n−1
∆

⌉
.

Theorem For n ≥ 2∆(dlogke − 1) + 2

I Tk(Cn,∆) = n − 1 if k = 1

I Tk(Cn,∆) =
⌈

n−1
∆

⌉
if 2 ≤ k ≤ ∆
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Sections of a Circulant
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Proof Outline

I k = 1: one node active during each round =⇒ n − 1 rounds

I k = ∆: spreading pattern is flooding, one section on each side
of the originator per round

I ∆
2 < k < ∆:

I Round 1: originator infects farthest k
2 neighbours on each side

I Round 2: infect remaining nodes in section on each side of
originator and more than half of nodes in next section on each
side

I continue until round
⌈

n−1
∆

⌉
I 2 ≤ k ≤ ∆

2 : infect nodes in section on each side of originator
in dlogk ∆e rounds and then flood for

⌈
n−1
∆

⌉
− 1 more rounds

to infect remaining sections giving
Tk(Cn,∆) ≤ dlogk ∆e+

⌈
n−1
∆

⌉
− 1
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Example for ∆
2 < k < ∆
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Optimal broadcast in Cn,∆ for n = 24, ∆ = 6, k = 4
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Example for 2 ≤ k ≤ ∆
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Broadcast in Cn,∆ for n = 24, ∆ = 6, k = 2, A = 1,
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Proof Outline for 2 ≤ k < ∆

I Round 1: originator infects farthest k
2 neighbours in section

on each side

I Round 2: infect the farthest k2

2 nodes in next section on each
side

I Continue to round α− 1 where α = dlogk ∆e
I Round α: infect all nodes in section α and some nodes in

section α− 2

I Round α + 1: infect remaining nodes in section α− 1, all
nodes in section α + 1, and some nodes in section α− 3

I Continue flooding in direction away from originator and filling
in toward originator until round 2α− 1
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Segments of Cn,∆,h
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Broadcasting in Cn,∆,h

Theorem Tk(Cn,∆,h) ≈ 2n
h∆ + DH where

I H = C (h; a, b) (double-step graph)

I 3 ≤ k ≤ ∆
2

I ∆ ≥ 4, ∆ even

Proof Outline

I First phase: originator sends message to nearest hub using
chords of length ∆

2 (approximately n
h∆ rounds worst case)

I Second phase: the informed hub broadcasts in the hub graph

H (DH =
⌈
−1+

√
2h−1

2

⌉
rounds)

I Third phase: each hub broadcasts to the two segments on
either side of it (approximately n

h∆ rounds)

Theorem Tk(Cn,∆,h) ≈ 3n
h∆ + DH , k = 2
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Broadcast in Tile
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Broadcast in a tile with k = 2
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Broadcast in Modified Tile
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Modified broadcast in a tile with k = 2
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Stopping the Infection

Theorem If no communications are lost, then all nodes of Cn,∆

will be infected for any 2 ≤ k ≤ ∆.

Proof Outline

I ∆
2 < k ≤ ∆: the infection spreads at the maximum possible
rate (flooding) and it is impossible to leave uninfected gaps.

I 2 ≤ k ≤ ∆
2 :

I permanently uninfected nodes must be permanently
unreachable from all active nodes

I try to construct two blocks of inactive (previously infected)
nodes with isolated uninfected nodes between the blocks

I blocks must contain at least ∆
2 nodes to prevent an active

node from infecting an isolated node
I two possible strategies (both fail)
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Protection near Originator
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Protection far from Originator
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