Combinatorial properties of f-palindromes

> Sébastier Labbé

Aims of the talk

Definitions and notations

Hof, Knill and Simon Conjecture

Main Results

Further wor

Combinatorial properties of *f*-palindromes

Sébastien Labbé

LaCIM, Université du Québec à Montréal

25 mai 2009

Outline

Combinatorial properties of *f*-palindromes

Sébastien Labbé

Aims of th talk

Definitions and notation

Hof, Knill and Simon Conjecture

Main Results

Further we

- 1 Aims of the talk
- 2 Definitions and notations
- 3 Hof, Knill and Simon Conjecture
- 4 Main Results
- 5 Further work

Aims of the talk

Combinatorial properties of f-palindromes

> Sébastien Labbé

Aims of the talk

Definitions and notation

Hof, Knill and Simon Conjecture

Main Results

Further wer

- Hof, Knill and Simon conjectured in 1995 a characterization of the fixed point of morphisms having an infinite palindrome complexity (the number of palindrome factors).
- Recently, this conjecture was solved for the binary alphabet (Tan, 2007).
- We show a similar result for fixed points of uniform morphisms having an infinite number of f-palindromes.

Combinatorial properties of f-palindromes

> Sébastien Labbé

Aims of the talk

Definitions and notations

Hof, Knill and Simon Conjecture

Main Results

Further wo

■ A set ∑ called alphabet whose elements are called letters.

■ Elements *w* of the free monoid $Σ^*$ are called words. We note $w ∈ Σ^*$ and

$$w = w_0 w_1 w_2 \cdots w_{n-1}, w_i \in \Sigma.$$

- The length of w is |w| = n.
- An infinite word $w = w_0 w_1 \cdots$ is a map $w : \mathbb{N} \to \Sigma$.
- If w = pfs, then p is called a prefix, f a factor and s a suffix of w.
- **Fact**(w) is the set of the (finite) factors of w.

Combinatorial properties of f-palindromes

> Sébastien Labbé

Aims of the talk

Definitions and notations

Hof, Knill and Simon Conjecture

Main Results

Further w

■ The reversal of a finite word w

$$\widetilde{w} = w_{n-1}w_{n-2}\cdots w_1w_0.$$

- A palindrome is a word w such that $w = \widetilde{w}$.
- $\operatorname{Pal}(w) = \operatorname{Fact}(w) \cap \operatorname{Pal}(\Sigma^*)$ is the set of the palindrome factors of w.

Combinatorial properties of f-palindromes

> Sébastien Labbé

Aims of the

Definitions and notations

Hof, Knill and Simon Conjecture

Main Results

Further w

■ A morphism is a function $\varphi : \Sigma^* \to \Sigma^*$ such that

$$\varphi(uv) = \varphi(u)\varphi(v)$$
 for all $u, v \in \Sigma^*$.

- A morphism φ is primitive if there exists $k \in \mathbb{N}$ such that every letters of Σ appear in $\varphi^k(\alpha)$ for all $\alpha \in \Sigma$.
- A morphism is uniform if $|\varphi(\alpha)| = |\varphi(\beta)|$ for all $\alpha, \beta \in \Sigma$.
- We denote by $\widetilde{\varphi}$ the morphism defined by $\alpha \mapsto \widetilde{\varphi(\alpha)}$.
- A fixed point of a morphism φ is a word w such that $\varphi(w) = w$.
- We say that φ is a right-conjugate of φ' if there exists a ord $u \in \Sigma^*$ such that

$$\varphi(\alpha)u = u\varphi'(\alpha)$$
, for all $\alpha \in \Sigma$.

Combinatorial properties of f-palindromes

> Sébastien Labbé

Aims of the talk

Definitions and notations

Hof, Knill and Simon Conjecture

Main Results

Further wor

Example

The non primitive morphism defined on $\Sigma = \{a, b, c, d, e\}$ by $a \mapsto ab, b \mapsto ba, c \mapsto cd, d \mapsto c, e \mapsto e$ has two finite fixed points :

- \blacksquare ε , the empty word
- e

and three infinite fixed points:

- abbabaabbaabbaabba...
- baababbaabbaabbaab · · ·
- cdccdcdccdcdcdcdcdcdcdcdcdcdcdccdc...

Each fixed point may be obtained by considering

$$\lim_{n\to\infty}\varphi^n(\alpha),\alpha\in\Sigma.$$

About palindrome complexity

Combinatorial properties of f-palindromes

> Sébastien Labbé

Aims of the talk

Definitions and notations

Hof, Knill and Simon Conjecture

Main Results

Further wo

Proposition (Droubay, Justin, Pirillo, 2001)

Let w be a finite word. Then,

$$|\mathrm{Pal}(w)| \leq |w| + 1$$

and Sturmian words reach that bound.

Definition (Brlek, Hamel, Nivat, Reutenauer, 2004)

Let w be a finite word. The defect D(w) of w is

$$D(w) = |w| + 1 - |\operatorname{Pal}(w)|.$$

and w is full if D(w) = 0. Moreover, the defect of a infinite word is the supremum of the defect of its finite prefixes.

Full words are also called rich in the recent litterature.

Combinatorial properties of f-palindromes

> Sébastier Labbé

Aims of the talk

Definitions and notation

Hof, Knill and Simon Conjecture

Main Results

Further work

Definition (Hof, Knill and Simon, 1995)

A morphism φ is in class \mathcal{P} if there exists a palindrome p and for each $\alpha \in \Sigma$ there exists a palindrome q_{α} such that $\varphi(\alpha) = pq_{\alpha}$.

Combinatorial properties of f-palindromes

> Sébastien Labbé

Aims of the talk

Definitions and notations

Hof, Knill and Simon Conjecture

Main Results

Further wo

The morphism

$$\varphi: \{a,b\}^* \rightarrow \{a,b\}^*$$

$$a \mapsto bb \cdot aba$$

$$b \mapsto bb \cdot a$$

is in class \mathcal{P} . It has only one fixed point beginning by letter b.

i	0	1	2	3	4	5	6	7
17 (71								13775
$ \operatorname{Pal}(\varphi^i(a)) $	2	6	20	72	266	990	3692	13776

Combinatorial properties of f-palindromes

Sébastien Labbé

Aims of the talk

Definitions and notation

Hof, Knill and Simon Conjecture

Main Results

Further worl

The square of the Thue-Morse morphism

 $\mu: \pmb{a} \mapsto \pmb{ab}, \pmb{b} \mapsto \pmb{ba}$ is in class \mathcal{P} :

$$\begin{array}{cccc} \mu^2: & \{a,b\}^* & \to & \{a,b\}^* \\ & a & \mapsto & abba \\ & b & \mapsto & baab \end{array}$$

The palindrome complexity table of one of its fixed point is:

i	0	1	2	3	4	5	6	7
$ \mu^i(a) $	1	2	4	8	16	32	64	128
$ \operatorname{Pal}(\mu^i(a)) $	2	3	5	9	15	29	53	109

Combinatorial properties of *f*-palindromes

Sébastien Labbé

Aims of th talk

Definitions and notation

Hof, Knill and Simon Conjecture

Main Results

Further wo

The morphism

$$\varphi: \{a,b\}^* \rightarrow \{a,b\}^*$$

$$a \mapsto abb$$

$$b \mapsto ba$$

is not in class \mathcal{P} . It has two infinite fixed points having both 23 palindromes :

i	0	1	2	3	4	5	6	7	8
$ \operatorname{Pal}(\varphi^i(a)) $	2	4	8	15	23	23	23	23	23
$ \operatorname{Pal}(\varphi^i(b)) $	2	3	6	13	18	23	23	23	23

Combinatorial properties of f-palindromes

> Sébastier Labbé

Aims of the talk

Definitions and notation

Hof, Knill and Simon Conjecture

Main Results

In their article, Hof, Knill and Simon also said:

"Clearly, we could include into class \mathcal{P} substitutions of the form $s(\alpha) = q_{\alpha}p$. We do not know whether all palindromic x_s arise from substitutions that are in this extended class \mathcal{P} ."

Their quote is now called HKS Conjecture and it may be stated in the following way :

Conjecture (Hof, Knill, Simon, 1995)

Let w be a fixed point of a primitive morphism. Then, $|\operatorname{Pal}(w)| = \infty$ if and only if there exists a morphism φ such that $\varphi(w) = w$ and such that either φ or $\widetilde{\varphi}$ is in class \mathcal{P} .

Combinatorial properties of f-palindromes

> Sébastier Labbé

Aims of the

Definitions and notation

Hof, Knill and Simon Conjecture

Main Results

Further v

Proposition (Blondin-Massé, 2007)

The morphism φ defined by $\mathbf{a} \mapsto \mathbf{abbab}$, $\mathbf{b} \mapsto \mathbf{abb}$ is such that neither φ nor $\widetilde{\varphi}$ are in class \mathcal{P} but $\lim_{n \to \infty} \varphi^n(\mathbf{a})$ has an infinite number of palindromes.

Hence, HKS Conjecture must be restated :

Conjecture

Let w be a fixed point of a primitive morphism. Then, $|\operatorname{Pal}(w)| = \infty$ if and only if there exists a morphism φ such that $\varphi(w) = w$ and such that φ has a conjugate in class \mathcal{P} .

This question was solved recently in the binary case (B. Tan, 2007).

Main Results

Combinatorial properties of f-palindromes

> Sébastier Labbé

Aims of th talk

Definitions and notation

Hof, Knill and Simon Conjecture

Main Results

Further wer

First, we obtained a result less general then B. Tan:

Theorem

Let $\Sigma = \{a, b\}$, $\varphi : \Sigma^* \mapsto \Sigma^*$ be a primitive uniform morphism and $w = \varphi(w)$ an fixed point. Then, w contains arbitrarily long palindromes if and only if φ , $\widetilde{\varphi}$ or φ^2 is in class \mathcal{P} .

Our approach is making use of *f*-palindromes. Therefore, we also obtained an interesting and similar result for *f*-palindromes...

Main Results

Combinatorial properties of *f*-palindromes

Sébastien Labbé

Aims of th talk

Definitions and notation

Hof, Knill and Simon Conjecture

Main Results

Further wor

Let $f: \Sigma \to \Sigma$ be an involution which extends to a morphism on Σ^* . We say that $w \in \Sigma^*$ is an f-palindrome if $w = f(\widetilde{w})$.

They are also called *f*-pseudo-palindrome in the litterature (Anne, Zamboni, Zorca, 2005; de Luca, De Luca, 2006; Halava, Harju, Kärki, Zamboni, 2007).

Example

Let $\Sigma = \{a, b\}$ and E be the involution $a \mapsto b, b \mapsto a$. The words

 ε , ab, ba, abab, aabb, baba, bbaa, abbaab, bababa are E-palindromes.

Main Results

Combinatorial properties of f-palindromes

> Sébastier Labbé

Aims of the talk

Definitions and notation

Hof, Knill and Simon Conjecture

Main Results

Further w

Definition

We say that a morphism φ is in class f- \mathcal{P} if there exists an f-palindrome p and for each $\alpha \in \Sigma$ there exists a f-palindrome g_{α} such that $\varphi(\alpha) = pg_{\alpha}$.

Our second result is:

Theorem

Let $\Sigma = \{a,b\}$, $\varphi : \Sigma^* \mapsto \Sigma^*$ be a primitive uniform morphism and $w = \varphi(w)$ an fixed point. If w contains arbitrarily long E-palindromes, then either φ , $\widetilde{\varphi}$, $\varphi \circ \mu$ or $\widetilde{\varphi} \circ \mu$ is in class E- \mathcal{P} , where μ is the Thue-Morse morphism.

Further work

Combinatorial properties of f-palindromes

> Sébastien Labbé

Aims of the talk

and notation

Hof, Knill and Simon Conjecture

Main Results

Further work

This talk belongs to a more general project which is to find a complete characterization of the all the fixed points \mathbf{u} of morphism for the four classes that emerge from palindrome complexity $|\operatorname{Pal}(\mathbf{u})|$ and defect $D(\mathbf{u})$.

$ \mathrm{Pal}(\mathbf{u}) $	$D(\mathbf{u})$	Examples
∞	0	Sturmian words, Fibonacci word.
∞	$0 < D(\mathbf{u}) < \infty$	$($ aababbaabbabaa $)^\omega$
∞	∞	Thue-Morse word.
finite	∞	$a\mapsto abb, b\mapsto ba$

Conjecture (Blondin-Massé, Brlek, Labbé, 2008)

Let **u** be the fixed point of a primitive morphism φ . If the defect of **u** is such that $0 < D(\mathbf{u}) < \infty$, then **u** is periodic.

Combinatorial properties of *f*-palindromes

Sébastie Labbé

Aims of the talk

Definitions and notation

Hof, Knill and Simon Conjecture

Main Results

Further work

Remerciements et Références..