A Discrete Optimization Formulation and Analysis for the General Minimum Cost Vaccine Formulary Selection Problem<sup>1,2,3</sup>

> Sheldon H. Jacobson University of Illinois Urbana, IL 61801-2302 shj@illinois.edu

1 Joint work with Shane N. Hall and Edward C. Sewell

2 This research has been supported in part by the National Science Foundation (DMI-0457176, DMI-0456945)

3 This research was featured in SIAM NEWS, November 2008, pages 1,4.

### Impact of Vaccines

World Health Organization (WHO): immunization and clean water have had the greatest impact on world health

Healthcare Profession: worldwide eradication of smallpox is one of the greatest achievements in public health

United States Life Expectancy (at birth):

47 years in 1900 76 years in 2003

Prevent ~3,000,000 worldwide deaths in children / year



## **Problem Background**

#### Centers for Disease Control and Prevention (CDC)

- Ensures the availability of vaccines
- Monitors vaccination coverage levels
- Annually publishes the Recommended Childhood Immunization Schedule (since 1995)
  - Outlines vaccination requirements for all children living in the United States
    - \* Includes number of doses for each disease
    - \* Recommended age for each dose



#### **Recommended Childhood Immunization Schedules**

| United States, January 1995    |              |                            |                     |                     |               |                      |               |                       |
|--------------------------------|--------------|----------------------------|---------------------|---------------------|---------------|----------------------|---------------|-----------------------|
|                                |              | TIME PERIOD (Age of Child) |                     |                     |               |                      |               |                       |
| DISEASE                        | 1<br>(Birth) | <b>2</b><br>(2 Mos)        | <b>3</b><br>(4 Mos) | <b>4</b><br>(6 Mos) | 5<br>(12 Mos) | <b>6</b><br>(15 Mos) | 7<br>(18 Mos) | <b>8</b><br>(4-6 Yrs) |
| Hopotitis P                    | Dos          | Dose 1                     |                     | Dose 3              |               |                      |               |                       |
| Hepatitis B                    |              | Dose 2                     |                     |                     |               |                      |               |                       |
| Diphtheria, Tetanus, Pertussis |              | Dose 1 Dose 2 Dose 3       |                     |                     | Dose 4        | Dose 4               |               |                       |
| Haemophilus influenzae type b  |              | Dose 1                     | Dose 2              | Dose 3 Dose 4       |               |                      |               |                       |
| Polio                          |              | Dose 1                     | Dose 2              | Dose 2 Dose 3       |               |                      | Dose 4        |                       |
| Measles, Mumps, Rubella        |              |                            |                     |                     | Do            | se 1                 |               | Dose 2                |

#### United States, January 2009

|                                | TIME PERIOD (Age of Child) |             |                     |                     |                     |                      |               |                      |                      |                        |
|--------------------------------|----------------------------|-------------|---------------------|---------------------|---------------------|----------------------|---------------|----------------------|----------------------|------------------------|
| DISEASE                        | 1<br>(Birth)               | 2<br>(1 Mo) | <b>3</b><br>(2 Mos) | <b>4</b><br>(4 Mos) | <b>5</b><br>(6 Mos) | <b>6</b><br>(12 Mos) | 7<br>(15 Mos) | <b>8</b><br>(18 Mos) | <b>9</b><br>(24 Mos) | <b>10</b><br>(4-6 Yrs) |
| Hepatitis B                    | Dose 1                     | Do          | se 2                |                     | Dose 3              |                      |               |                      |                      |                        |
| Diphtheria, Tetanus, Pertussis |                            |             | Dose 1              | Dose 2              | Dose 3 Dose 4       |                      |               | Dose 5               |                      |                        |
| Haemophilus influenzae type b  |                            |             | Dose 1              | Dose 2              | Dose 3 Dose 4       |                      |               |                      |                      |                        |
| Polio                          |                            |             | Dose 1              | Dose 2              | Dose 3              |                      |               | Dose 4               |                      |                        |
| Measles, Mumps, Rubella        |                            |             |                     |                     |                     | Do                   | se 1          |                      |                      | Dose 2                 |
| Varicella                      |                            |             |                     |                     | Dose 1              |                      |               |                      |                      |                        |
| Pneumococcus                   |                            |             | Dose 1              | Dose 2              | Dose 3              | Do                   | se 4          |                      |                      |                        |
| Influenza                      |                            |             |                     |                     | Dose 1 (yearly)     |                      |               |                      |                      |                        |
| Hepatitis A                    |                            |             |                     |                     |                     | Dose 1               |               | Dose 2               |                      |                        |

(C) Jacobson

### **Key Immunization Schedule Changes**

#### Add/merge Time Periods United States, January 2009 **TIME PERIOD** (Age of Child) 7 1 2 3 4 5 6 8 9 10 DISEASE (Birth) (1 Mo) (15 Mos) (18 Mos) (24 Mos (4-6 Yrs) (2 Mos)(4 Mos) (6 Mos) (12 Mos) Dose 2 Hepatitis B Dose 3 Dose 1 Dose 3 Diphtheria, Tetanus, Pertussis Dose 1 Dose 2 Dose 4 Dose 5 Dose 1 Dose 2 Dose 3 Dose 4 Haemophilus influenzae type b Dose 1 Dose 2 Polio Dose 3 Dose 4 Measles, Mumps, Rubella Dose 2 Change in Vaccine Policy Varicella Pneumococcus Dose 1 -Dose Requirements Influenza e 1 (yearly) -New biotechnology Hepatitis A Dose 2 -Advancing medical Add/remove Diseases knowledge -Eradication

-Emerging/reemerging infectious disease

(C) Jacobsor

### **Combination Vaccines**

#### Two-month well-baby checkup

1995 Vaccines HBV DTP HIB OPV

| Vaccination |    |       |  |  |  |  |
|-------------|----|-------|--|--|--|--|
| Options     | in | 1995: |  |  |  |  |

1. HBV, DTP, HIB, OPV

| DISEASE                                 | Time Period 3<br>(2 Mos) |
|-----------------------------------------|--------------------------|
| Hepatitis B                             | Dose 2                   |
| Diphtheria, Tetanus,<br>Pertussis       | Dose 1                   |
| <i>Haemophilus influenzae</i><br>type b | Dose 1                   |
| Polio                                   | Dose 1                   |
| Pneumococcus                            | Dose 1                   |

| 2009 |              |  |  |  |  |  |
|------|--------------|--|--|--|--|--|
| V    | accines      |  |  |  |  |  |
| IBV  | HBV-HIB      |  |  |  |  |  |
| TaP  | DTaP-HIB     |  |  |  |  |  |
| HIB  | DTaP-HBV-IPV |  |  |  |  |  |
| PV   | DTaP-HIB-IPV |  |  |  |  |  |
| PNU  |              |  |  |  |  |  |

#### **Vaccination Options in 2009:**

- 2. HBV, DTaP-HIB, IPV, PNU
- 4. DTaP-HBV-IPV, HIB, PNU
- 6. HBV-HIB, DTaP-HIB, IPV, PNU
- 8. HBV-HIB, DTaP-HIB-IPV, PNU

9. DTaP-HIB, DTaP-HBV-IPV, PNU 10. DTaP-HBV-IPV, DTaP-HIB-IPV, PNU

 $\Rightarrow$  A combinatorial explosion of immunization alternatives

1. HBV, DTaP, HIB, IPV, PNU

3. HBV-HIB, DTaP, IPV, PNU

7. HBV-HIB, DTaP-HBV-IPV, PNU

5. DTaP-HIB-IPV, HBV, PNU

### Problem Statement

### • What is the optimal vaccine formulary?

- Vaccine formulary: the inventory of vaccines a pediatrician or clinic maintains in order to satisfy the Recommended Childhood Immunization Schedule (RCIS)
- Determine the minimum cost way to <u>satisfy</u> the RCIS
  - Vaccine formulary comprises the vaccines administered in the optimal solution



# Solution Methodologies

### Optimization Problem

- General Minimum Cost Vaccine Formulary Selection Problem (GMCVFSP)
- Modeling Approaches and Algorithms
  - Exact Methods: IP and DP
  - Heuristics: intuitive constructive heuristics

### Literature Review

- Weniger et al. (1998) & Jacobson et al. (1999)
  - Collaborative pilot study between CDC/academia
    - Modeled sub-schedule as integer program (IP)
  - Optimal vaccine formularies based on differing economic criteria
- Sewell et al. (2001) & Sewell and Jacobson (2003)
  - IP combined with bisection algorithm to "reverse engineer" maximum inclusion prices of potential combination vaccines
  - Jacobson et al. (2003b)
    - Demonstrates this analysis for Hepatitis B-Haemophilus influenzae type b combination vaccine
- Jacobson and Sewell (2003)
  - IP/bisection algorithm combined with Monte Carlo simulation
    - Sampled different injection costs to determine probability distribution for price of combination vaccines

Visit <u>https://netfiles.uiuc.edu/shj/www/shj.html</u> for a complete list of papers.

### Model Preliminaries

#### Given an arbitrary CIS:

- SETS: <u>Time Periods</u>,  $T = \{1, 2, ..., \tau\}, t \in T$ , <u>Diseases</u>,  $D = \{1, 2, ..., \delta\}, d \in D$ , <u>Vaccines</u>,  $V = \{1, 2, ..., \nu\}, v \in V$
- INTEGER PARAMETERS:
  - $n_d$  (dose requirement for disease  $d \in D$ ),  $j = 1, 2, ..., n_d$
  - $m_{dt}$  (minimum # of doses required for disease  $d \in D$  through time period  $t \in T$ )
  - $M_{dt}$  (maximum # of doses required for disease  $d \in D$  through time period  $t \in T$ )
  - $c_v$  (cost of vaccine  $v \in V$ )
- BINARY PARAMETERS: Schedule Indicators and Vaccine Indicators

 $P_{djt} = \begin{cases} 1 & \text{if dose requirement } j \text{ for disease } d \in D \text{ may be satisfied in time period } t \in T \\ 0 & \text{otherwise} \end{cases}$ 

 $I_{vd} = \begin{cases} 1 & \text{if vaccine } v \in V \text{ immunizes against disease } d \in D \\ 0 & \text{otherwise} \end{cases}$ 

(C) Jacobson

### Model Preliminaries (Cont.)

• DECISION VARIABLES:

 $X_{tv} = \begin{cases} 1 & \text{if vaccine } v \in V \text{ is administered in time period } t \in T \\ 0 & \text{otherwise} \end{cases}$ 

 $U_{dt} = \#$  of required vaccine doses administered

for disease  $d \in D$  through time period  $t \in T$ 

- OBJECTIVE: Minimize the cost of vaccines
- CONSTRAINTS: Satisfy CIS
  - Every dose requirement (in the appropriate time window) is satisfied by <u>at least</u> one vaccine
  - Assumes extraimmunization is allowed

### **Cost and Extraimmunization**

#### What is the cost of a vaccine?

- Monetary cost of vaccine
  - Federally negotiated contract prices vs. commercial prices
- Preparation and storage
- Cost of an injection
- Parental/guardian opportunity costs

#### Extraimmunization

- If less costly, it should be allowed
- Extra vaccine doses (in most cases) are biologically safe
- Combination vaccines have been designed to limit extraimmunization
  - This recently changed with the FDA approval of Pentacel©
- Cost objective naturally discourages extraimmunization

### **GMCVFSP IP**

#### Integer Programming (IP) Model

Minimize

$$\sum_{t\in T}\sum_{v\in V}c_vX_{tv}$$

Subject to

$$\begin{split} U_{dt} \leq U_{d(t-1)} + 1 & \forall d \in D, t \in T \\ U_{dt} \leq U_{d(t-1)} + \sum_{v \in V} I_{vd} X_{tv} & \forall d \in D, t \in T \\ m_{dt} \leq U_{dt} \leq M_{dt} & \forall d \in D, t \in T \\ X_{tv} \in \{0,1\} & \forall t \in T, v \in V \\ U_{dt} \text{ integer} & \forall d \in D, t \in T \end{split}$$

### **Computational Complexity**

- GMCVFSP is NP-hard
  - follows directly from Set Covering
- Remains NP-hard when
  - $\tau = 1, c_v = 1$  for all  $v \in V$ , and  $n_d = 1$  for all  $d \in D$
  - Only one vaccine exists in V
  - $\delta \ge 3$
  - Every vaccine is at least trivalent
- Polynomial Special Cases
  - Monovalent vaccines
  - Bivalent Vaccines
  - $\delta \leq 2$
  - Tight CIS (i.e., a single time window for each dose)

### GMCVFSP DP

#### Dynamic Programming (DP) approach

- "Divide and Conquer" technique
  - Divide problem into several sub-problems
  - Sub-problems are *not* independent
- Solves GMCVFSP, one time period at a time
  - Begins with first time period and moves forward in time

#### DP offers several advantages

- Efficient in practice
- Provides realistic and theoretical decomposition
- Robust optimization framework



### GMCVFSP DP

- Can be viewed as a shortest path network flow problem
- U<sub>dt</sub> decision variables characterize the states (nodes in the network)
- $X_{tv}$  decision variables characterize the *decisions* (arcs in the network)





|         | TIME PERIOD |      |               |        |      |
|---------|-------------|------|---------------|--------|------|
| DISEASE | 1           | 2    | 3             | 4      |      |
| 1       | Do          | se 1 | Dose 2        | Dose 3 |      |
| 2       | Dose 1      |      | Dose 1 Dose 2 |        | se 2 |



### **GMCVFSP DP**

#### • Executes in $O(\tau(\mathbf{S}_{MAX})^2\mathbf{T}_{SCP})$ time, where

- **S**<sub>MAX</sub> is the maximum # of states in any time period
- O(T<sub>SCP</sub>) is the time to solve the set cover problem at each time period
- $\tau$  is the number of time periods
- Using "branch and remember" recursive algorithm, DP executes in  $O(\tau \delta(\mathbf{S}_{MAX})^2 + \upsilon \delta^2 \delta)$  time

### **Heuristics & Approximation Algorithms**

- Assume every disease d ∈ D has mutually exclusive doses (i.e., nonoverlapping dose time periods)
  - Simplifies optimization models
    - Constraints involving  $U_{dt}$  variables become redundant
  - Practical assumption
    - Every disease  $d \in D$  in the current (2008) Recommended Childhood Immunization Schedule has *mutually exclusive doses*
- Define T<sub>LP</sub> as the time needed to solve the LP relaxation of the respective optimization problem
- $D = \sum_{d=1,2,...,\delta} n_d$ , the total number of doses to be administered.



# **MAX Rounding Heuristic**

- Rounds decision variables from LP relaxation solution to construct a feasible integer solution
  - Only rounds decision variables with "large" fractional values
- Executes in O(T<sub>LP</sub>+Dτδ) time
- MAX Rounding is an  $\alpha$ -approximation algorithm, where  $\alpha = \max_{d \in D} \alpha_d$  and

 $\alpha_d \equiv (\sum_{v \in V} I_{vd}) (\max_{j=1,2,\dots,n_d} \sum_{t \in T} P_{djt})$ 



### **Greedy Heuristic**

- "Best Bang for the Buck" heuristic
  - Iteratively selects the "best" available vaccine that immunizes against the most disease doses
  - Does not require the solution of an LP
- Executes in  $O(D\tau\delta)$  time for each problem

• Greedy is an  $H_{\beta}$  -approximation algorithm for GMCVFSP-MED, where  $\beta = \max_{v \in V} \{Val(v)\}$  and  $H_k \equiv \sum_{i=1}^k \frac{1}{i}$ 

### **Computational Experiments**

- Computational comparison of DP and IP (B&B)
- Two sets of test problems
  - 2006 Recommended Childhood Immunization Schedule (RCIS) using different scenarios (coded in MATLABv7.0)
  - Randomly generated "large" CIS with differing valency levels
    - DP coded in C
    - CPLEX 9.0 used to solve IP



# **Computational Experiments**

|              | Sc     | enario 1      | Scenario 2 |        |               |     |
|--------------|--------|---------------|------------|--------|---------------|-----|
| Algorithm    | Z      | Time<br>(sec) | θ          | Z      | Time<br>(sec) | ť   |
| MAX Rounding | 499.05 | 0.13          | 1.00       | 736.77 | 0.13          | 1.( |
| Greedy       | 499.05 | 0.06          | 1.00       | 719.81 | 0.05          | 1.( |
| DP           | 499.05 | 0.32          |            | 719.81 | 0.30          |     |
| IP B&B       | 499.05 | 0.91          |            | 719.81 | 0.92          |     |

- Scenario 1 uses currently licensed vaccines, where  $c_v =$ Federal contract purchase price for vaccine  $v \in V$
- Scenario 2 uses currently licensed vaccines, where  $c_v =$ Federal contract purchase price for vaccine  $v \in V +$ \$10 (as a fixed cost of injection)
- $\theta = Z_{Heuristic}/Z^*$

2006 RCIS

IP B&B is MATLAB's binary optimization solver.

### **Computational Experiments**

| arge CIS |               | DP       | IP (CPLEX) | LP-IP |
|----------|---------------|----------|------------|-------|
|          | $Val(v) \leq$ | CPU Time | CPU Time   | GAP   |
|          | 3             | 9.27     | 0.88       | 1.01  |
|          | 4             | 11.65    | 20.82      | 1.02  |
|          | 5             | 14.51    | 958.56     | 1.03  |
|          | 6             | 17.01    | 501.74     | 1.05  |

- Size of each CIS:  $\tau = 24$ ,  $\delta = 17$ ,  $\upsilon = 100$
- Averaged over 30 randomly generated CIS

### **Research Contributions**

- Theoretical development of GMCVFSP
- Provides practical insights to policy makers, vaccine manufacturers, and pediatricians/public health administrators:
  - What is the economic impact of schedule changes?
  - What is the economic viability of combination vaccines?
  - How should new vaccines be priced?
  - What is the optimal vaccine formulary for a particular immunization environment?



### **Research Extensions**

- Extend practicality and robustness of model
  - Different objective functions, additional immunization environment specific constraints, stochastic elements to DP
- Improve existing solution methodologies and/or develop new solution methodologies (both exact and heuristic)
- Extend model to other applications.

