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Large Schröder numbers

A Schröder path is a path in the plane, starting and ending on
the x-axis, never going below the x-axis, using the steps

(1,1) up
(1,−1) down
(2,0) flat



Large Schröder numbers

A Schröder path is a path in the plane, starting and ending on
the x-axis, never going below the x-axis, using the steps

(1,1) up
(1,−1) down
(2,0) flat



Sometimes it’s convenient to draw a Schröder path in
“Cartesian coordinates":



A small Schröder path is a Schröder path with no flat steps on
the x-axis.

The large Schröder number rn is the number of Schröder paths
of semilength n (from (0,0) to (2n,0)). The small Schröder
number sn is the number of small Schröder paths of semilength
n.

n 0 1 2 3 4 5 6 7 8 9
rn 1 2 6 22 90 394 1806 8558 41586 206098
sn 1 1 3 11 45 197 903 4279 20793 103049

Theorem. For n > 0, rn = 2sn.
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Generating function proof #1
Let R(x) =

∑∞
n=0 rnxn and let S(x) =

∑
n=0 snxn.

Every Schröder path can be uniquely decomposed into prime
Schröder paths:

Each prime is either a flat step or an up step followed by a
Schröder path followed by a down step, so the generating
function for prime Schröder paths is x + xR(x). Therefore,

R(x) =
∞∑

k=0

(x + xR(x))k =
1

1− x − xR(x)
.

and similarly

S(x) =
1

1− xR(x)
.



The first equation is a quadratic, which may be written

xR(x)2 + (x − 1)R(x) + 1 = 0.

Solving by the quadratic formula gives

R(x) =
1− x −

√
1− 6x + x2

2x
.

Then from S(x) = 1/
(
1− xR(x)

)
we get

S(x) =
1 + x −

√
1− 6x + x2

4x

so R(x) = 2S(x)− 1.



The first equation is a quadratic, which may be written

xR(x)2 + (x − 1)R(x) + 1 = 0.

Solving by the quadratic formula gives

R(x) =
1− x −

√
1− 6x + x2

2x
.

Then from S(x) = 1/
(
1− xR(x)

)
we get

S(x) =
1 + x −

√
1− 6x + x2

4x

so R(x) = 2S(x)− 1.



The first equation is a quadratic, which may be written

xR(x)2 + (x − 1)R(x) + 1 = 0.

Solving by the quadratic formula gives

R(x) =
1− x −

√
1− 6x + x2

2x
.

Then from S(x) = 1/
(
1− xR(x)

)
we get

S(x) =
1 + x −

√
1− 6x + x2

4x

so R(x) = 2S(x)− 1.



The first equation is a quadratic, which may be written

xR(x)2 + (x − 1)R(x) + 1 = 0.

Solving by the quadratic formula gives

R(x) =
1− x −

√
1− 6x + x2

2x
.

Then from S(x) = 1/
(
1− xR(x)

)
we get

S(x) =
1 + x −

√
1− 6x + x2

4x

so R(x) = 2S(x)− 1.



Generating function proof #2
We rewrite
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∞∑

k=0
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Bijective proof

We find a bijection from Schröder paths with at least one flat
step on the x-axis to small Schröder paths (Schröder paths with
no flat steps on the x-axis).
We can factor a Schröder path with at least one flat step on the
x-axis as PFQ, where F is the last flat step, so Q has no flat
steps on the x-axis:

We replace the path with UPDQ where U is an up step and D
is a down step:
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Schröder polynomials
Instead of just counting Schröder paths, we can weight them by
α#flat steps. We get Schröder polynomials rn(α) and sn(α), with
rn(1) = rn and sn(1) = sn. Everything that we’ve done so far
extends to rn(α) and sn(α). With R(x) =

∑∞
n=0 rn(α)xn and

S(x) =
∑∞

n=0 sn(α)xn, we have

R(x) =
1

1− αx − xR(x)

S(x) =
1

1− xR(x)

so

R(x) =
1− αx −

√
(1− αx)2 − 4x
2x

S(x) =
1 + αx −

√
(1− αx)2 − 4x

2x(1 + α)

and rn(α) = (1 + α)sn(α) for n > 0.
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We also have explicit formulas

rn(α) =
n∑

k=0

1
n − k + 1

(
2n − 2k

n − k

)(
2n − k

k

)
αk

=
n∑

k=0

Cn−k

(
2n − k

k

)
αk

sn(α) =
n−1∑
k=0

1
n + 1

(
n − 1

k

)(
2n − k

n

)
αk



Narayana numbers
The Narayana number N(n, k) = 1

n

(n
k

)( n
k−1

)
is the number of

Dyck paths of semilength n with k peaks.

A Dyck path with k peaks has k − 1 valleys, so N(n, k) is also
the number of Dyck paths with k − 1 valleys.

Let

Nn(α) =
n∑

k=1

N(n, k)αk−1 and Nn(α) =
n∑

k=1

N(n, k)αk ,

so that Nn(α) = αNn(α).



Narayana numbers
The Narayana number N(n, k) = 1

n

(n
k

)( n
k−1

)
is the number of

Dyck paths of semilength n with k peaks.

A Dyck path with k peaks has k − 1 valleys, so N(n, k) is also
the number of Dyck paths with k − 1 valleys.

Let

Nn(α) =
n∑

k=1

N(n, k)αk−1 and Nn(α) =
n∑

k=1

N(n, k)αk ,

so that Nn(α) = αNn(α).



Proof #4

To any Schröder path we associate a Dyck path by replacing
each flat step with a peak:

To go back we replace any subset of the peaks with flat steps.

Therefore, rn(α) = Nn(1 + α).

With valleys instead of peaks we get sn(α) = Nn(1 + α).

Therefore

rn(α) = Nn(1 + α) = (1 + α)Nn(1 + α) = (1 + α)sn(α).
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High peaks

A high peak is a peak that is at height greater than 1:

Let Ñn(α) count Dyck paths of semilength n by high peaks.

We can get small Schröder paths from Dyck paths by replacing
some of the high peaks with flat steps, so as before, we get
sn(α) = Ñn(1 + α).

Since we already know that sn(α) = Nn(1 + α), we have
Ñn(α) = Nn(α). Is there a bijective proof?
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A bijective proof was given by Emeric Deutsch, A bijection on
Dyck paths and its consequences, Discrete Math. 179 (1998),
253–256.

Deutsch also stated, “Sulanke [private communication] has
constructed another bijection on Dyck paths from which one
obtains the equidistribution of the parameters (i) the number of
high peaks and (ii) the number of valleys. Namely, for each path
raise the horizontal axis two units and let the high peaks
become the valleys of the image path.”

What does this mean?
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Key observation: A Dyck path is determined by the positions of
its valleys, and also by the positions of its high peaks:

Positions for valleys
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The last step with a bigger example:

A path with the chosen peaks
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Motzkin and Riordan paths

A Motzkin path is a path in the plane, starting and ending on
the x-axis, never going below the x-axis, using the steps

(1,1) up
(1,−1) down
(1,0) flat

A Riordan path is a Motzkin path with no flat steps on the
x-axis.
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Let Mn be the number of Motzkin paths of length n and let Jn be
the number of Riordan paths of length n.

Then

∞∑
n=0

Mnxn =
1− x −

√
1− 2x − 3x2

2x2

∞∑
n=0

Jnxn =
1 + x −

√
1− 2x − 3x2

2x(1 + x)

n 0 1 2 3 4 5 6 7 8 9 10
Mn 1 1 2 4 9 21 51 127 323 835 2188
Jn 1 0 1 1 3 6 15 36 91 232 603

Theorem. Mn = Jn + Jn+1.
Proof: The same as before.
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Generalized Schröder paths

It is convenient to use “Cartesian coordinates". We look at
paths using north, east, and northeast steps that stay below the
line x = my for some integer m:

The role of flat steps on the x-axis is now played by diagonal
steps that end on the line x = my .



Theorem. Let rn be the number of paths from (0,0) to (mn,n)
and let sn be the number of these paths with no diagonal steps
ending on the line x = my . Then for n > 0, rn = 2sn

Bijective proof. The same as in the case m = 1.

Generating function proof (sketch). Let R(x) =
∑∞

n=0 rnxn and
S(x) =

∑∞
n=0 snxn. Then

R(x) =
1

1− xR(x)m−1 − xR(x)m

and

S(x) =
1

1− xR(x)m .

So
R(x) =

1 + xR(x)m

1− xR(x)m = 2S(x)− 1.
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