Problems and Results in Asymptotic Combinatorics

Rod Canfield

erc@cs.uga.edu

Department of Computer Science
University of Georgia

CanaDAM

May 25, 2009

Thank-you to Coauthors

Part I, Macmahon statistic: Svante Janson & Doron Zeilberger

Part II, Durfee polynomials: Sylvie Corteel & Carla Savage

Part III, Prescribed parts and multiplicities: Herb Wilf

Smoothness

A sequence a_n is *unimodal* provided for some K

$$a_1 < a_2 < \dots < a_K \ge a_{K+1} \ge \dots$$

log concave:

$$(a_n)^2 \ge a_{n-1}a_{n+1}$$

Proposition: If $a_n > 0$ then log concavity implies unimodality.

A related Matrix

$$\begin{pmatrix} a_0 & a_1 & a_2 & a_3 & \cdots \\ 0 & a_0 & a_1 & a_2 & \cdots \\ 0 & 0 & a_0 & a_1 & \cdots \end{pmatrix}$$

 a_n is *totally positive* if all sub-matrices have nonnegative determinant

Theorem: a_n is t.p. $\iff \sum_n a_n x^n$ has all roots in $(-\infty, 0]$

Gaussian Polynomials

$${a+b \choose a}_q = \prod_{j=1}^a \frac{1-q^{b+j}}{1-q^j}$$

Combinatorics:

$$[q^n] \binom{a+b}{a}_q$$

is the number of partitions of n with all parts $\leq a$, and no more than b parts.

Polynomial? Positive coefficients?

$$\binom{N}{a}_{q} = q^{a} \binom{N-1}{a}_{q} + \binom{N-1}{a-1}_{q}$$

Answers

Totally Positive: obviously not, roots on unit circle

Log concave: obviously not, since $(a, b \ge 2)$

$$\binom{a+b}{a}_q = 1 + q + 2q^2 + \cdots$$

Unimodal: yes, Sylvester (1878); and O'Hara (1990)

But Wait

Consider
$$c_j = [q^j] \binom{2n}{n}_q$$
 $j \in \{m-1, m, m+1\}$ $m = n^2/2 - 1$

n	$(c_m)^2 - c_{m+1} \times c_{m-1}$
2	-1
4	-7
6	-165
8	-1529
10	44160
12	7715737
14	905559058
16	101507214165
18	11955335854893
20	1501943866215277

Central Limit Theorem

$$\binom{a+b}{a}_q = c_0 + c_1 q + c_2 q^2 + \cdots$$

The numbers c_j , normalized, determine a mean μ and a variance σ^2

$$\sup_{x} \left| \binom{a+b}{a}^{-1} \sum_{j \le \mu + x\sigma} c_j - \frac{1}{2\pi} \int_{-\infty}^{x} e^{-t^2/2} dt \right| \to 0$$

as $a,b \to \infty$.

Central versus Local

"If one can prove a central limit theorem for a sequence $a_n(k)$ of numbers arising in enumeration, then one has a qualitative feel for their behavior. A local limit theorem is better because it provides asymptotic information about $a_n(k) \dots$,"

Bender, 1973

Usual way to pass from Central to Local: unimodality (misses center); or log-concavity

A Local Limit Theorem

Theorem.

$$[q^n] \binom{a_1 + \dots + a_K}{a_1, \dots, a_K}_q = \frac{1}{\sigma \sqrt{2\pi}} \binom{a_1 + \dots + a_K}{a_1, \dots, a_K}$$

$$\times \left(e^{-x^2/2} + O(\frac{1}{m}) \right)$$

where

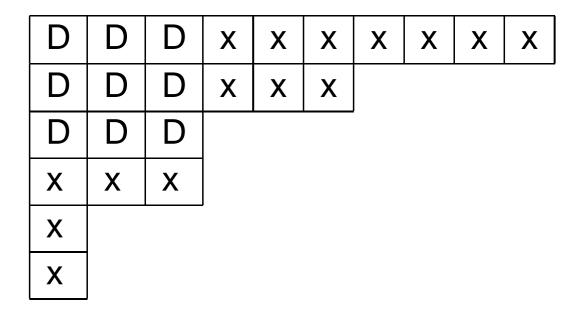
$$n = \mu + x\sigma$$

$$m = \min(a_1, \dots, a_K)$$

$$\max\{a_1, \dots, a_K\} = O(e^{(c-\delta)Km}).$$

Durfee Square

$$24 = 10 + 6 + 3 + 3 + 1 + 1$$



Ferrer's diagram, with Durfee square D'ed

GF via Durfee

$$\sum_{n=0}^{\infty} p(n)x^n = \sum_{d=0}^{\infty} \frac{x^{d^2}}{(1-x)^2(1-x^2)^2\cdots(1-x^d)^2}$$

p(n) = # partitions of the integer n

Durfee Polynomials

$$\sum_{d=0}^{\infty} \frac{y^d x^{d^2}}{(1-x)^2 (1-x^2)^2 \cdots (1-x^d)^2}$$

$$= \sum_{n=0}^{\infty} x^n \left[\sum_{d=0}^{\lfloor n^{1/2} \rfloor} p(n,d) y^d \right]$$

p(n,d) = # partitions of the integer n with Durfee square size d

Recursion

$$p(n,d) = 2p(n-d,d) + p(n-2d+1,d-1) - p(n-2d,d)$$

Can be obtained from the GF, or combinatorially

Table

p(n,d)

	1	,	/	
$n \backslash d$	1	2	3	Total
1	1			1
2	2			2
3	3			3
4	4	1		5
5	5	2		7
6	6	5		11
7	7	8		15
8	8	14		22
9	9	20	1	30
10	10	30	2	42

Asymptotics

$$p(n,d) = \sum_{n_1+n_2=(n-d^2)} P(n_1,d)P(n_2,d)$$

$$P(n,k) = \#$$
 partitions of n with $\leq k$ parts

In a series of papers from the early 1950's, George Szekeres has obtained an asymptotic series for P(n, k).

Theorem

Uniformly for $\epsilon \le x \le 1 - \epsilon$

$$p(n, xn^{1/2}) = \frac{F(x)}{n^{5/4}} \exp\left\{n^{1/2}G(x) + O(n^{-1/2})\right\}$$

$$F(x) = \cdots$$

$$G(x) = \cdots$$

For Those Who Want to Know

$$F(x) = 2\pi^{1/2} f(u)^2 (2 + u^2)^{5/4} \left(g(u) - ug'(u) - u^2 g''(u) \right)^{-1/2}$$

$$G(x) = 2g(u)(2+u^2)^{-1/2}$$

$$u = \sqrt{\frac{2x^2}{1 - x^2}}$$

For Those Who REALLY Want to Know

$$f(u) = \frac{v}{2\pi u\sqrt{2}} \left(1 - e^{-v} - \frac{u^2 e^{-v}}{2}\right)^{-1/2}$$

$$g(u) = \frac{2v}{u} - u \log(1 - e^{-v})$$

$$u^{2} = \frac{v^{2}}{\int_{0}^{v} \frac{t}{e^{t} - 1} dt}$$

Corollaries

1. The numbers p(n,d), $0 \le d \le \lfloor n^{1/2} \rfloor$ are asymptotically normal as $n \to \infty$

$$\mu_n, \sigma_n^2 \sim c_1 n^{1/2}, c_2 n^{1/2}$$

2. For all n sufficiently large, and $\epsilon n^{1/2} \leq d \leq (1 - \epsilon)n^{1/2}$

$$p(n,d)^2 \ge p(n,d+1)p(n,d-1)$$

3. For all n sufficiently large, the mean and the mode differ by less than 1

Getting to the Roots

The latter three findings would all be implied by

Conjecture: For all n, the Durfee polynomial $D_n(y) = \sum_d p(n, d) y^d$ has all its roots real and nonpositive.

Empirical Evidence

Theorem. For $n \leq 1000$ Durfee polynomial $D_n(y)$ has real roots only

Theorem: For $n \le 5000$, the Durfee mean and mode differ by less than 1

The whole story: erc, Corteel, & Savage Durfee polynomials, *Electron. J. Combin.* **5** (1998), Research Paper 32

Questions: Asymptotic 3-positivity; n = 1,000,000

Restricted Parts

Let S be a set of positive integers, and $p_S(n)$ be the number of partitions of n all of whose parts lie in S.

Possible growth rates?

$$S = \{1, 2, 3, \ldots\}$$
 $\log p_S(n) \sim C n^{1/2}, \quad C = \pi \sqrt{2/3}$

$$S = \{1, 2, 4, 8, \ldots\}$$
 $\log p_S(n) \sim C(\log n)^2, \quad C = (2\log 2)^{-1}$

Credits: Hardy-Ramanujan & de Bruijn

A Theorem of Schur

An example of polynomial growth of $p_S(n)$ Assume $gcd(a_1, ..., a_k) = 1$. Then,

$$S = \{a_1 < a_2 < \dots < a_k\}$$
 $\log p_S(n) \sim C \log n, \quad C = k - 1$

More precisely,

$$p_S(n) \sim \frac{n^{k-1}}{(k-1)! a_1 a_2 \cdots a_k}$$

Remark: For any S (finite or infinite) $p_S(n)$ is positive for all sufficiently large n if and only if gcd(S) = 1

Multiplicites & Parts

Definition. Let S and M be two sets of positive integers, the allowable parts and their multiplicities. (Let $0 \in M$, too.)

p(n; S, M) is the number of partitions $\lambda \vdash n$ into parts taken from the set S, and such that each part appearing in λ has multiplicity in M.

```
p(n; S, M) = \#\{ \text{ pairs } (n_1, \dots, n_k), (m_1, \dots, m_k) : \\ 1 \le n_1 < n_2 < \dots < n_k \\ n_i \in S, m_i \in M \\ n = m_1 n_1 + \dots + m_k n_k \}.
```

Estimates of Growth

Let $M(x) = \#\{m \le x : m \in M\}$

$$p(n; S, M) \le \prod_{a_i \in S} M(n/a_i)$$

$$\exists r \le n^2 s.t. p(r; S, M) \ge \frac{1}{n^2 + 1} \prod_{a_i \in S} M(n/a_i)$$

If p(n; S, M) is monotone,

$$p(n; S, M) \ge \frac{1}{n+1} \prod_{a_i \in S} M(\sqrt{n}/a_i)$$

Slow, but not Polynomial

Theorem: For any infinite S and constant k

$$p_S(n) \neq O(n^k)$$

Theorem: For any $\omega(n) \to \infty$, there exists infinite S such that

$$p_S(n) = O(n^{\omega(n)})$$

Slow given M and S

Let $S = \{2^{2^j}\}_{j=0}^{\infty}$, and

$$M = \{0\} \cup \{2^{2^j}\}_{j=0}^{\infty}$$

Then

$$p(n; S, M) \le (\log n)(\log \log n)^{\log \log n}$$

However, p(n; S, M) = 0 for many n

Challenge

Are there infinite sets S and M such that

$$p(n; S, M) > 0$$

for all sufficiently large n; yet,

$$p(n; S, M) = O(n^C)$$

Second Challenge

Sufficient conditions on infinite sets S and M to assure

$$p(n; S, M) > 0$$

for all sufficiently large *n*