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Thank-you to Coauthors

Part I, Macmahon statistic: Svante Janson & Doron
Zeilberger

Part II, Durfee polynomials: Sylvie Corteel & Carla Savage

Part III, Prescribed parts and multiplicities: Herb Wilf
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Smoothness

A sequence an is unimodal provided for some K

a1 < a2 < · · · < aK ≥ aK+1 ≥ · · ·

log concave:
(an)2 ≥ an−1an+1

Proposition: If an > 0 then log concavity implies unimodality.
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A related Matrix









a0 a1 a2 a3 · · ·
0 a0 a1 a2 · · ·
0 0 a0 a1 · · ·

...









an is totally positive if all sub-matrices have nonnegative
determinant

Theorem: an is t.p. ⇐⇒
∑

n anxn has all roots in (−∞, 0]
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Gaussian Polynomials

(

a + b

a

)

q

=
a

∏

j=1

1 − qb+j

1 − qj

Combinatorics:

[qn]

(

a + b

a

)

q

is the number of partitions of n with all parts ≤ a, and no
more than b parts.

Polynomial ? Positive coefficients ?
(

N

a

)

q

= qa

(

N − 1

a

)

q

+

(

N − 1

a − 1

)

q
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Answers

Totally Positive: obviously not, roots on unit circle

Log concave: obviously not, since (a, b ≥ 2)
(

a + b

a

)

q

= 1 + q + 2q2 + · · ·

Unimodal: yes, Sylvester (1878); and O’Hara (1990)
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But Wait

Consider cj = [qj ]
(2n

n

)

q

j ∈ {m − 1,m,m + 1} m = n2/2 − 1

n (cm)2 − cm+1 × cm−1

2 -1
4 -7
6 -165
8 -1529

10 44160
12 7715737
14 905559058
16 101507214165
18 11955335854893
20 1501943866215277
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Central Limit Theorem

(

a + b

a

)

q

= c0 + c1q + c2q
2 + · · ·

The numbers cj , normalized, determine a mean µ and a
variance σ2

sup
x

∣

∣

∣

∣

∣

∣

(

a + b

a

)−1
∑

j≤µ+xσ

cj − 1

2π

∫ x

−∞
e−t2/2dt

∣

∣

∣

∣

∣

∣

→ 0

as a, b → ∞.
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Central versus Local

“If one can prove a central limit theorem for a sequence
an(k) of numbers arising in enumeration, then one has a
qualitative feel for their behavior. A local limit theorem is
better because it provides asymptotic information about
an(k) . . .,”

Bender, 1973

Usual way to pass from Central to Local: unimodality
(misses center); or log-concavity
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A Local Limit Theorem

Theorem.

[qn]

(

a1 + · · · + aK

a1, . . . , aK

)

q

=
1

σ
√

2π

(

a1 + · · · + aK

a1, . . . , aK

)

×
(

e−x2/2 + O(
1

m
)

)

where
n = µ + xσ

m = min(a1, . . . , aK)

max{a1, . . . , aK} = O(e(c−δ)Km).

Problems and Results in Asymptotic Combinatorics – p. 10/30



Durfee Square

24 = 10 + 6 + 3 + 3 + 1 + 1

D D D x x x x x x x
D D D x x x
D D D
x x x
x
x

Ferrer’s diagram, with Durfee square D’ed
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GF via Durfee

∞
∑

n=0

p(n)xn =
∞

∑

d=0

xd2

(1 − x)2(1 − x2)2 · · · (1 − xd)2

p(n) = # partitions of the integer n
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Durfee Polynomials

∞
∑

d=0

ydxd2

(1 − x)2(1 − x2)2 · · · (1 − xd)2

=
∞

∑

n=0

xn





bn1/2c
∑

d=0

p(n, d)yd





p(n, d) = # partitions of the integer n with Durfee square size d
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Recursion

p(n, d) = 2p(n − d, d) + p(n − 2d + 1, d − 1) − p(n − 2d, d)

Can be obtained from the GF, or combinatorially
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Table

p(n, d)

n\d 1 2 3 Total
1 1 1
2 2 2
3 3 3
4 4 1 5
5 5 2 7
6 6 5 11
7 7 8 15
8 8 14 22
9 9 20 1 30
10 10 30 2 42
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Asymptotics

p(n, d) =
∑

n1+n2=(n−d2)

P (n1, d)P (n2, d)

P (n, k) = # partitions of n with ≤ k parts

In a series of papers from the early 1950’s, George
Szekeres has obtained an asymptotic series for P (n, k).
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Theorem

Uniformly for ε ≤ x ≤ 1 − ε

p(n, xn1/2) =
F (x)

n5/4
exp

{

n1/2G(x) + O(n−1/2)
}

F (x) = · · ·

G(x) = · · ·
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For Those Who Want to Know

F (x) = 2π1/2f(u)2(2 + u2)5/4
(

g(u) − ug′(u) − u2g′′(u)
)−1/2

G(x) = 2g(u)(2 + u2)−1/2

u =

√

2x2

1 − x2
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For Those Who REALLY Want to Know

f(u) =
v

2πu
√

2

(

1 − e−v − u2e−v

2

)−1/2

g(u) =
2v

u
− u log(1 − e−v)

u2 =
v2

∫ v
0

t
et−1dt
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Corollaries

1. The numbers p(n, d), 0 ≤ d ≤ bn1/2c are asymptotically
normal as n → ∞

µn, σ2
n ∼ c1n

1/2, c2n
1/2

2. For all n sufficiently large, and εn1/2 ≤ d ≤ (1 − ε)n1/2

p(n, d)2 ≥ p(n, d + 1)p(n, d − 1)

3. For all n sufficiently large, the mean and the mode differ
by less than 1
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Getting to the Roots

The latter three findings would all be implied by

Conjecture: For all n, the Durfee polynomial
Dn(y) =

∑

d p(n, d)yd has all its roots real and nonpositive.
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Empirical Evidence

Theorem. For n ≤ 1000 Durfee polynomial Dn(y) has real
roots only

Theorem: For n ≤ 5000, the Durfee mean and mode differ
by less than 1

The whole story:
erc, Corteel, & Savage
Durfee polynomials, Electron. J. Combin. 5 (1998), Research
Paper 32

Questions: Asymptotic 3-positivity; n = 1, 000, 000
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Restricted Parts

Let S be a set of positive integers, and pS(n) be the number
of partitions of n all of whose parts lie in S.

Possible growth rates?

S = {1, 2, 3, . . .} log pS(n) ∼ Cn1/2, C = π
√

2/3

S = {1, 2, 4, 8, . . .} log pS(n) ∼ C(log n)2, C = (2 log 2)−1

Credits: Hardy-Ramanujan & de Bruijn
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A Theorem of Schur

An example of polynomial growth of pS(n)
Assume gcd(a1, . . . , ak) = 1. Then,

S = {a1 < a2 < · · · < ak} log pS(n) ∼ C log n, C = k − 1

More precisely,

pS(n) ∼ nk−1

(k − 1)!a1a2 · · · ak

Remark: For any S (finite or infinite) pS(n) is positive for all
sufficiently large n if and only if gcd(S) = 1
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Multiplicites & Parts

Definition. Let S and M be two sets of positive integers, the
allowable parts and their multiplicities. (Let 0 ∈ M , too.)

p(n;S,M) is the number of partitions λ ` n into parts taken
from the set S, and such that each part appearing in λ has
multiplicity in M .

p(n;S,M) = #{ pairs (n1, . . . , nk), (m1, . . . ,mk) :

1 ≤ n1 < n2 < · · · < nk

ni ∈ S,mi ∈ M

n = m1n1 + · · ·mknk

}.
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Estimates of Growth

Let M(x) = #{m ≤ x : m ∈ M}

p(n;S,M) ≤
∏

ai∈S

M(n/ai)

∃r ≤ n2s.t.p(r;S,M) ≥ 1

n2 + 1

∏

ai∈S

M(n/ai)

If p(n;S,M) is monotone,

p(n;S,M) ≥ 1

n + 1

∏

ai∈S

M(
√

n/ai)
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Slow, but not Polynomial

Theorem: For any infinite S and constant k

pS(n) 6= O(nk)

Theorem: For any ω(n) → ∞, there exists infinite S such
that

pS(n) = O(nω(n))
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Slow given M and S

Let S = {22j}∞j=0, and

M = {0} ∪ {22j}∞j=0

Then
p(n;S,M) ≤ (log n)(log log n)log log n

However, p(n;S,M) = 0 for many n
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Challenge

Are there infinite sets S and M such that

p(n;S,M) > 0

for all sufficiently large n; yet,

p(n;S,M) = O(nC)
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Second Challenge

Sufficient conditions on infinite sets S and M to assure

p(n;S,M) > 0

for all sufficiently large n
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